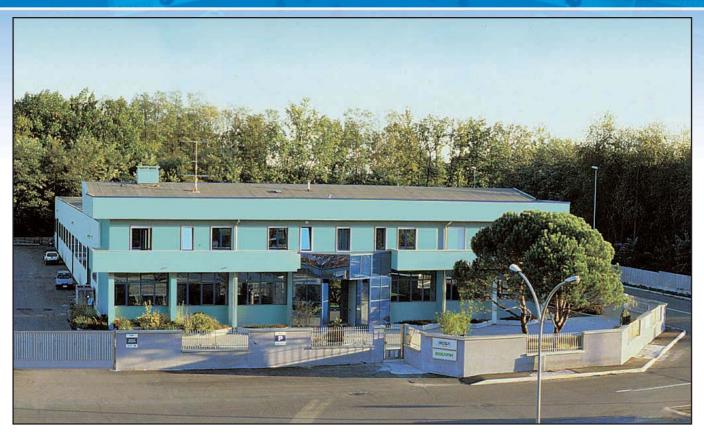
CUSCINETTI LINEARI E TAVOLE DI PRECISIONE Precision linear bearings and tables

Always in pole position

Cuscinetti lineari e tavole di precisione Precision linear bearings and tables



Rosa Sistemi S.p.A.
20025 Legnano (MI) Italy
Via S. Quasimodo, 22/24
Tel. ++39 0331 469999 - Fax ++39 0331 469996
http://www.rosa-sistemi.it

E-mail: sales@rosa-sistemi.it

INTRODUZIONE

Rosa Sistemi S.p.A., ha attuato un serio programma di costruzione di guide a rulli e tavole normalizzate su rulli, ottenendo in breve tempo dei risultati notevoli dal punto di vista qualitativo.

L'idea della realizzazione dei cuscinetti lineari è nata dalla profonda conoscenza dei problemi di rettifica delle superfici piane e dagli innumerevoli problemi costruttivi che si presentano dovendo realizzare delle guide a coda di rondine.

L'utilizzo di guide normalizzate a rulli ha semplificato notevolmente queste applicazioni riducendo i costi di lavorazione e garantendo l'intercambiabilità delle guide stesse, reperibili in qualunque momento.

Da un punto di vista delle prestazioni esiste lo stesso divario che si riscontra tra un cuscinetto a sfere e una bronzina e cioè, a favore del primo, una estrema dolcezza del movimento, la quasi assenza dell'attrito di primo distacco, la possibilità di un preciso riposizionamento continuo.

Queste caratteristiche determinano una usura minima e quindi riducono i possibili interventi della ripresa dei giochi.

Da non sottovalutare il problema, oggi più che mai sentito, della carenza di manodopera specializzata che induce le aziende ad impiegare il più possibile prodotti reperibili in commercio.

È certo che le guide a rulli e a rullini non possono risolvere tutti i tipi di scorrimento lineare anche in considerazione di possibili sollecitazioni dinamiche (quali urti ecc.) ma sicuramente possono risolvere la stragrande maggioranza di essi.

La Rosa Sistemi S.p.A. è sicura di offrire ad una clientela esigente un prodotto tecnologicamente validissimo ad un costo molto competitivo; ne danno conferma numerosi clienti, fra cui si annoverano aziende di fama internazionale.

La serietà dell'azienda e dei suoi collaboratori è un binomio che garantisce una efficiente assistenza tecnica in fase di progettazione e rapidità nelle consegne.

Per la realizzazione di dette guide si sono eseguiti criteri tecnologicamente all'avanguardia onde conferire loro la garanzia di un mantenimento costante nel tempo della precisione e della durata.

INTRODUCTION

Rosa Sistemi SpA, has seriously undertaken a production program of linear rolling systems and standardized linear tables reaching in a short period of time excellent quality. The idea of production of linear bearings was born from the profound knowledge of grinding problematics of flat surfaces and manufacturing complexities for dove-tail table assemblies. The utilization of standard linear systems has simplified these applications by reducing the manufacturing costs and

increasing the maintainability.

From a performance point of view, the gap is similar to one found between rolling bearings and sliding bearings. The first offers an extremely smooth movement with vitually no variation of frictional behavior and the possibility of precise, continuous positioning. These charactestistics yield a minimum amount of wear, thus a reduction of clearance adjustments. Also, the lack of specialized labor, forces the manufacturers to utilize ready- to-install units. It is obvious that linear rolling systems may not be answer to all the linear motion problems, but they may be the answer for a large portion of them.

Rosa offers to its demanding customers products with high technical content and competitive prices. This is confirmed by its large customer base, and amoung them, internationally renowned companies.

Rosa's reputation and seriousness guarantees extremely efficient response in engineering support and delivery. Technologically advanced manufacturing methods are amployed to produce the linear systems in order to guarantee the constant precision, endurance and quality.

Utilizzatori dei nostri prodotti divisi per settori

• Macchine utensili in generale. Ed in particolare:

- Rettificatrici senza centri
- Rettificatrici per interni
- Rettificatrici per esterni
- Rettificatrici per cuscinetti
- Foratrici
- Fresatrici
- Pantografi
- Affilatrici per utensili

• Macchine varie:

- Macchine per deformazione materiali
- Elettroerosioni
- Saldatrici speciali
- Macchine per montaggi
- Manipolatori
- Robot
- Industria ottica, meccanica fine, elettronica
- Strumentazione scientifica
- Macchine fotografiche e cinematografice industriali
- Metrologia ed applicazioni su calibri speciali, presetting e robot di controllo

• Macchine per:

- costruzione calzature
- costruzione occhialeria e componenti
- bisellatura delle lenti
- serigrafia
- microforature
- lavorazione dell'oro
- lavorazione delle pietre preziose
- orologeria
- bigiotteria
- lavorazione della gomma e lavorazione pneumatici
- lavorazione del marmo e del vetro
- lavorazione del legno
- industrie tessili
- ultrasuoni

• Industrie costruttrici di macchine elettromedicali

- macchine per radiologia (TAC)
- ortopantomografi
- elettroforesi del sanque
- controllo della vista

Particolari applicazioni sono effettuate da Università (Politecnici), Centri di ricerca, laboratori chimici e di analisi ecc.

Possiamo confermare che l'applicazione dei ns. prodotti è effettuata in tutti i rami artigianali ed industriali dove è richiesta in modo specifico la precisione e la sensibilità di qualsiasi parte in movimento.

Application by sector

• Machine tools in general, particularly:

- Centerless Grinders
- Bore Grinders
- External Grinders
- Bearing Grinders
- Boring Machines
- Milling Machines
- Tool Sharpening Machines

• General machinery:

- Material Forming Machines
- Electrical Discharge Machines
- Welding Machines
- Assembly Machines
- Manipulators
- Robots
- Optical, Precision & Electronics Industry
- Instruments
- Industrial Movie & Photography Machines
- Measuring Systems

• Machines for:

- Shoe Industry
- Optical Industry
- Chamfering of lens
- Rubber & Tire Industry
- Marble & Glass Industry
- Wood Working Industry
- Textyle Industry
- Gold Industry
- Precious Stone Industry
- Clock Working Industry
- Ultrasound Equipment

Medical industry:

- Cat Scanners
- Orthopantomographs
- Blood Processing Equipment
- Optometry Equipment

Specialty applications are realized at research centers, chemical laboratories, etc. Our products are used in both private and industrial sector where precise and sensitive movements are required.

Indice	pagina/page
Caratteristiche tecniche generali e calcolo della durata Technical Characteristics & Life Calculation	6-7-8
Condizioni ideali per il montaggio delle guide Mounting Recommendations	9-10-11
Applicazione di guide di diversa lunghezza Application of Rails of Different Length	12
Esempi di collaudo Inspection Example	13-14
Esempi di calcolo e verifica dei carichi Calculation Example	15-16
Guide a rulli «GR» Cross rollers rails "GR"	17
Guide a rulli «NG» Cross rollers rails "NG"	23
Guide «M/V» con riporto di materiali antifrizione Rails with antifriction material "M/V"	25
Guide a rulli «RM» e «RV» Needle rollers rails "RM RV"	27
Guide «RVA» con riporto di materiale antifrizione Rails with Antifriction Material "RVA"	31
Guide «GRD» a doppio prisma Double Raceway Rails "GRD"	33
Pattini a sfere tipo «RK» e «RKD» Recirculating Ball Bearings "RK" and "RKD"	37
Guide speciali Special Rails	39
Tavole tipo «TR» (Acciaio e ghisa) Frictionless Tables "TRL" (Steel and cast iron)	41
Tabelle di collaudo Inspection Tables	48
Tavole tipo «TRL» (Lega leggera) Frictionless Tables "TRL" (Light alloy)	49
Tabelle di collaudo Inspection Tables	56
Tavole tipo «TRKD» Frictionless Tables "TRKD"	57
Tabelle di collaudo Inspection Tables	59
Tavole di precisione «TV» Precision tables "TV"	60

Caratteristiche tecniche

Le guide sono realizzate con acciai speciali per utensili e temprate a cuore con una durezza pari a 60 ± 2 HRC.

Le precisioni ottenibili per quanto riguarda la divergenza del parallelismo tra la pista di rotolamento ed il piano di riscontro sono diversificate a seconda della qualità e cioè: 10 micron su 1600 mm per la qualità normale, 5 micron su 1600 mm per la qualità scelta.

Si precisa inoltre che detti elementi vengono controllati singolarmente durante tutte le fasi di lavorazione sino al collaudo finale. Viene inoltre eseguita una prova di controllo antidistruttiva per accertare che durante il trattamento termico non abbiano subito internamente delle incrinature che potrebbero alterare sia la precisione quanto la durata.

I vantaggi derivati dall'impiego di guide su rulli si possono riassumere in 6 punti:

- Movimenti molto sensibili (coefficiente d'attrito 0,003)
- Assenza dell'attrito di primo distacco (effetto Stik-Slip)
- Usura minima
- Capacità di carico elevata
- Massima precisione
- Disponibilità a magazzino di tutti i tipi a catalogo.

Esiste già nel programma di produzione una gamma completa di tavole normalizzate su rulli da 25 mm fino a 1010 mm di lunghezza con larghezze variabili da 30 a 145 mm e capacità di carico dinamico da 250 N fino a 48100 N.

La struttura delle tavole può essere realizzata in ghisa G25 invecchiata oppure in acciaio.

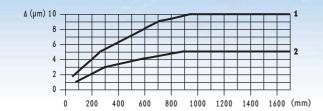
È disponibile inoltre una gamma di tavole aventi strutture in alluminio anticorodal che per l'esiguità della loro massa consentono di ridurre le forze inerziali.

Technical characteristics

The rails are made of special alloyed steel and through-hardened to a hardness value of 60 ± 2 HRC. The precision relative to the parallelism variation between the raceways and the reference surface are dependent upo the quality selected (10 micron/1600 millimeters for the "standard" quality, 5 micron/1600 millimeters for the "selected" quality).

It is important to state that all the elements are individually checked during all manufacturing phases before the final inspection. Also, a non-destructive check is performed to assure the absence of internal cracks which may have been generated during heat treating. Such micro-cracks could drastically affect both the precision and the life of the rails.

The advantatges obtained by employing rolling systems can be summarized as follows:


- Very sensitive movement (friction coefficient of 0.003)
- Lack of start-up frictional losses (stick-slip)
- Minimum wear
- High load carrying capacity
- Maximized precision
- Availability in stock of all models included in the catalogue

In our production program we have a full range of standardized cross roller tables with lengths ranging from 25 to 1010 mm and widths of 30 to 145 mm; with load ratings from 250 N to 48100 N. The structural members of the tables are made of cast iron (G25), naturally aged, or of steel.

A range of anticorodal tables is also available; their light mass makes it possible to reduce inertial forces.

Caratteristiche tecniche/ Technical characteristics

HRC	Fd
20	0,10
30	0,25
40	0,34
45	0,42
50	0,53
55	0,78
57	0,90
58	1,00

TrC°	Ft
300	0,60
250	0,75
120	0,90
80	1,00

Tolleranze di fabbricazione e di lavorazione delle superfici

- 1. Qualità normale
- 2. Qualità scelta

Le guide Rosa temprate a cuore con una durezza in HRC 60 ± 2 sono realizzate con acciai speciali per utensili da taglio secondo DIN 1.2842. Ogni singola guida viene seguita accuratamente durante tutte le fasi di lavorazione ed infine è soggetta ad un ulteriore controllo per quanto riguarda: geometria, durezza, rugosità della pista di rotolamento e delle altre superfici.

Durezza

La durezza ha una grande importanza in quanto è uno dei fattori che determinano la durata delle quide.

È importante sapere che ad una durezza di 58 HRC corrisponde un fattore di durezza Fd = 1, quindi la guida sarà nella migliore condizione di lavoro. A durezze inferiori ai 58 HRC corrispondono dei fattori di durezza che moltiplicati per la capacità di carico normale (cioè con durezza pista HRC = 58) la riducono proporzionalmente. Se ne deduce che una guida con durezza HRC = 55 e capacità di carico ipotetica di 3000 N avrà una P reale = 3000 Fd = 3000 x 0,78 = 2340 N.

Temperatura

Anche la temperatura ha una notevole influenza sulla durata delle guide. Per temperature superiori a 80°C, si dovrà usare, caso per caso, il fattore correttivo Ft corrispondente alla temperatura presente TrC°

Nel riquadro a lato sono indicati quattro fattori di correzione, i quali dovrebbero contemplare i casi più frequenti. Se la capacità di carico di un elemento a ricircolazione di sfere RK 6100 è di 715 N, con una temperatura di 250°C sarà di 715x0,75 = 536,25 N.

Il range di utilizzo delle guide é compreso tra -40°C e +80°C.

Accelerazioni

Sono consentite al limite dei 50 m/sec², purché siano verificate tutte le condizioni ideali per un perfetto funzionamento del sistema di scorrimento.

Velocità

Le guide a rulli tipo GR possono essere utilizzate per velocità fino a 50 m/min.

Per velocità maggiori è bene che il Cliente consulti il ns. ufficio tecnico.

Protezione

È assolutamente necessario che le guide vengano protette da possibili infiltrazioni di impurità sia solide che liquide.

Guide rettificate in linea

È possibile realizzare carri con guide più lunghe dei tipi standard. A questo proposito le guide vengono intestate e rettificate in linea sulla lunghezza voluta.

Non si otterrà in tal modo alcuna differenza di precisione, di dolcezza del movimento e di scorrevolezza. Nel caso di una fornitura del suddetto tipo, le guide verranno numerate in modo che l'utilizzatore possa eseguire un corretto montaggio.

Manufacturing tolerances

- 1. Standard quality
- 2. Selected quality

The rails are through-hardened to 60 ± 2 HRC. The material is alloy steel. (DIN 1.2842) Each rail is accurately checked during all the manufacturing phases and it is subjected to a final inspection where the geometry, hardness, surface texture of raceways and adjacent surfaces are thoroughly checked.

Hardness

The rail hardness is of major importance since its variation has a direct influence on the life expectancy of the system.

It is important to know that the best working conditions (Fd = 1) corresponds to a hardness value of 58 HRC minimum.

For hardness lower than 58 HRC, the teorical load rating should be multiplied by the corresponding hardness factor. Therefore, if a rail with a hardness of 55 HRC and theoretical load rating of 3000 N is used, its load rating will be C = 3000 x Fd which corresponds to 3000 x 0.78 thus 2340 N.

Temperature

The temperature also has a great influence on the system life. For temperatures above 80°C the factor Ft should be introduced. The table shows the most common factors if the theoretical load rating of a recirculating ball unit RK 6100 is 715 N such a rating will be reduced to 536,25 N (715x0.75) if the temperature rises to 250°C . Permissible operating temperatures is between -40°C and $+80^{\circ}\text{C}$.

Acceleration

If all the conditions of the system have been verified, values up to 50 m/sec 2 are allowed.

Speed

Linear systems utilizing GR type rails could be used for speed up to 50 m/min. If higher speeds are sought, our engineering office should be

Sealing and protection

It is absolutely necessary that the linear system is protected from impurities of either solid or liquid nature.

Multi-piece ways

For systems requiring longer than standard catalogue rails, multipiece ways can be provided. To accomplish this, the individual rails are head-ground and ground simultaneously to the required length. By doing so, there will be no difference in precision and smoothness. In case of shipping of multipiece system, the individual rails will be numbered to allow proper mounting.

0	0 1	1
2	2 3	3

Lubrificazione

Normalmente le quide a rulli vengono lubrificate con un leggerissimo velo di olio per cuscinetti, molto fluido, applicato in fase di montaggio. In pratica è come se lavorassero a secco, proprio per sfruttare maggiormente le caratteristiche di scorrevolezza e precisione. Si possono utilizzare, soprattutto in caso di alte velocità, olii (tipo CLP o HLP tipo olio con viscosità da ISO V6 15 e 100 secondo DIN 51519)

Precarico

Avviene normalmente con grani di registrazione in corrispondenza alle viti di ancoraggio, utilizzando appropriate chiavi dinamometriche. Un sistema di quide può essere precaricato tramite lardone conico oppure tramite un cilindro o un cuneo, ma questi tipi di precarico, molto più complessi, richiedono un'esecuzione perfetta delle lavorazioni delle strutture portanti le guide, cosa che non in tutti i casi il Cliente può o vuole predisporre.

Il precarico può variare da un 2% a un 20% della massima capacità di carico ammissibile C.

Durata

Abbiamo avuto modo di constatare quali fattori possano influenzare negativamente la durata di un sistema di guide a rulli (temperatura e durezza). Oltre a quelli già esposti ne ricordiamo altri che sono non meno importanti dei primi:

- 1) tolleranze di lavorazione dei supporti delle quide non rispondenti a quanto indicato nelle condizioni ideali per il montaggio delle quide;
- 2) montaggi non rispondenti a quanto indicato nel ns. catalogo o dalle indicazioni del ns. Uff. Tecnico;
- 3) presenza di particelle solide o impurità tra gli elementi volventi;
- 4) si deve sempre evitare di sottoporre il sistema al carico statico massimo ammissibile prima che sia stato effettuato un breve rodagqio dello stesso.

Appurato che le condizioni di cui sopra siano rispettate, la durata delle guide si può calcolare tenendo conto della seguente formula:

$$L = FD \times \left(\frac{C}{P}\right)^a \times 10^5 \text{ (m)}$$

dove:

L = durata nominale espressa in metri

- FD = fattore della durata corrispondente alla percentuale di superamento che si vuole ottenere (tabella sotto)
- C = capacità di carico massimo ammissibile del rullo in esame in N (vedi tabella a paq. 20)
- P = carico a cui è sottoposto il rullo maggiormente sollecitato in N
- a = esponente dell'equazione della durata (10/3 per rulli, 3 per sfere) Lh = durata nominale espressa in ore
- = numero dei cicli completi al minuto (1 ciclo = andata + ritorno)
- = corsa espressa in mm

Con i sequenti dati possiamo calcolare la durata dello scorrimento:

Per rulli diametro 9 mm.

C = 1300 N

= 200 N

Durezza quida = HRC 58

Temperatura = 100 °C

Probabilità di superamento 90% FD = 1

L = 1 x
$$\left(\frac{1300}{200}\right)^{10/3}$$
 x 10⁵ = 513 in 10⁵ (m)

Possiamo calcolare la durata nominale espressa in ore usando la seguente formula, premesso però che la corsa C = 400 (mm) e Nc numero di corse (andata + ritorno) in un minuto = 30 cicli, quindi:

Lh =
$$\frac{8,33}{\text{H x Nc}}$$
 x L = $\frac{8,33x513x105}{400x30}$ = 35610 ore

%	FD
90	1,00
95	0,62
96	0,53
97	0,44
98	0,33
99	0.21

Lubrication

The rolling systems are usually lubricated with a thin oil film applied during assembly. This lubrication method allows the better utilization of the precision and smoothness characteristics of such an arrangement. However, should the application dictate it, oil-drip, oil-mist can be used. (Type CLP or LP with viscosity from ISO V6 15 to 100 like DIN 51519)

Preload

Usually the preload is applied with set screws placed in correspondence of the mounting screws by using appropriate dynamometric spanners. A system could also be preloaded by means of a tapered gib, a wedge of cylinder, though all of these methods are more complex and require a more accurate execution of the supporting structure. Such accuracy may not be achievable or even wanted by the user. The preload setting is usually dictated by the application and can very between 2% and 20% of the dynamic load rating C of the system examined.

Life

We have already examined two of the factors which may affect life of a rolling system (temperature and hardness). In addition, we like to mention others which are also important.

- 1) Manufacturing tolerances of the supporting surfaces non-respon dent to the minimum requirements.
- 2) Mounting not according to our recommendations.
- 3) Presence of particles or impurities between the rolling elements.
- 4) The system should not be subjected to its maximum allowable load until after a break-in period to allow proper adjustment of the system itself.

In these conditions are respected the life of a system can be calculated according to the following formula: $L = FD \times \left(\frac{C}{P}\right)^{a} \times 10^{s} (m)$

$$L = FD \times \left(\frac{C}{P}\right)^a \times 10^5 \text{ (m)}$$

- = Basic rated life (m)
- = Reliability factor (see table)
- = Dinamic load rating (N)
- Р = Dynamic load (N)
- = Life exponent (10/3 for rollers, 3 for balls)
- = Basic rated life (hours)
- = Frequency of reciprocating motion in 1 minute
- = Stroke length (mm)

Example: Given - Roller 9 mm

- C = 1300 N
- P = 200 N

Rail hardness = HRC 58

Temperature = 100 °C

Reliability 90% FD = 1

$$L = 1 \times \left(\frac{1300}{200}\right)^{10/3} \times 10^5 = 513 \text{ in } 10^5 \text{ (m)}$$

Lh =
$$\frac{8,33}{H \times Nc}$$
 \times L = $\frac{8,33 \times 513 \times 105}{400 \times 30}$ = 35610 ore

%	FD
90	1,00
95	0,62
96	0,53
97	0,44
98	0,33
99	0,21

Condizioni ideali per il montaggio delle quide

La figura 2 rappresenta le due strutture sulle quali normalmente vengono montate le guide a rulli, rullini o sfere.

Affinché le guide possano rispondere integralmente ai requisiti riportati sul ns. catalogo è assolutamente necessario che la struttura sulla quale vengono montate, dia delle buone garanzie di rigidità in modo tale che sottoposte allo sforzo del precarico non assumano posizioni particolari variando la geometria ideale del contatto tra rulli e pista di rotolamento:

Mounting recommendations

The figure below represents the two components which are usually equipped with way systems with either rollers, balls or needles. The structure onto which the rails have been mounted must be sturdy enough so as to prevent rails from taking particular positions, when stressed by the preload, which may jeopardize the ideal geometry between rollers and raceways.

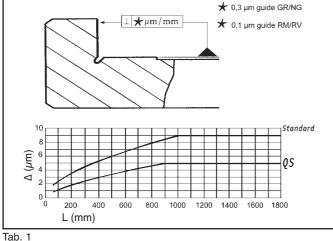
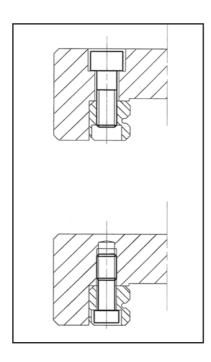


Fig. 2


Per un corretto montaggio si devono assolutamente verificare le sequenti condizioni:

- 1) le superfici di appoggio devono essere rettificate o nel peggiore dei casi fresate, cercando, nel secondo caso, di curare la lavorazione in modo particolare;
- 2) dalla lavorazione dipende quindi la planarità ed il parallelismo dei piani indicati con il convenzionale segno di rettifica, i quali devono rispettare le tolleranze riportate nel grafico sopra;
- 3) è molto importante che il piano di appoggio delle guide rispetto alla spalla relativa, abbia un angolo di 90°; (vedi tabella 1)
- 4) i fori devono essere svasati onde evitare che le quide possano assumere una posizione non corretta.

For a properly executed mounting, the following condition should be verified:

- 1) The supporting surfaces should be ground or, in the worst case, milled, paying particular attention to the process.
- 2) The planarity and parallelism of the system are directly affected by the precision of the surfaces indicated to be ground. The deviation allowance for such surfaces should be within the values indicated on the graph; (see table 1)
- 3) The included angle between the two adjacent surfaces should be 90°. (see table 1)
- 4) The holes for the retention screws should be carefully deburred to quarantee the surface quality of the supporting face.

Tutte le quide sono dotate di fori di ancoraggio filettati. Ciò per consentire di fissare la guida in due modi (vedi fig. 3 e fig. 4).

It should be noted that all rails Fig. 3 have threaded holes. This allows for two different mounting methods. (see pict. 3 and 4)

Fia. 4

Condizioni ideali per il montaggio delle guide/ Mounting recommendations

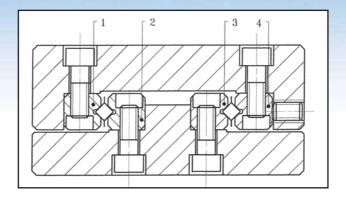


Fig. 5

Montaggio delle guide

Comunque sia il tipo di montaggio consigliamo di seguire ordinatamente le sequenti fasi:

- montaggio delle guide n. 2 e n. 3, le quali, prima del fissaggio, devono essere tenute ben pressate contro le loro superfici di appoggio;
- 02) controllo del planparallelismo delle quide montate;
- 03) montaggio della guida n. 1 osservando le stesse norme usate per la n. 2 e la n. 3;
- 04) montaggio della guida di registrazione n. 4 senza bloccare le viti di fissaggio;
- 05) inserire le relative gabbie;
- 06) montare le viti o piastrine terminali;
- 07) spostare la parte mobile a fine corsa, indifferentemente in un senso o nell'altro, in modo che le gabbie si centrino da sole;
- 08) precaricare i grani di registrazione in modo da eliminare totalmente i giochi, senza serrare eccessivamente le viti. I valori di precarico variano da un 2% a un 20% della capacità di carico dinamico C del rullo (vedi tabella a pag. 20), in conformità del tipo di applicazione e quindi in funzione del tipo di guida, della rigidità che si vuole ottenere e della disposizione dei carichi stessi. Comunque sia, la tavola dovrà sempre avere una grande sensibilità di scorrimento;
- 09) bloccare le viti di fissaggio della guida n. 4;
- 10) il marchio "ROSA" della guida deve sempre essere visibile affinché la guida sia montata correttamente;
- 11) a montaggio effettuato assicurarsi che il fine corsa del comando agisca prima che le gabbie urtino le viti o le piastrine di arresto.
- 12) per guide in coppia, come la fig. 6, le quote A e A1 saranno contenute in ± 0,01 mm (a richiesta con supplemento prezzo);

Mounting of rails

Independently from any assembly method, we recommended to follow these steps:

- 01) Assembly of rails 2 and 3, which should be carafully pressed against the supporting surfaces before tightening of the screws.
- 02) Checking of the planarity, parallelism of the rails installed.
- 03) Installation of the rail 1, following the same steps as for rails 2 and 3.
- 04) Installation of the rail 4, without tightening the retaining screws.
- 05) Installation of th relative cages.
- 06) Installation of end pieces and/or wipers.
- 07) Slide the moving portion of the system to the end of the travel/stroke to allow the centering of the cages.
- 08) Tighten the preloanding screws sufficiently to eliminate the clearance. The preloading value should be selected according to the application requirement (rail type, rigidity, etc.). Such a value may very between 2% and 20% of the rated dynamic capacity C. In alla cases the smoothness of the system must be preserved.
- 09) Tighten the retaining screws of rail 4.
- 10) To ensure a proper mounting of the rail, the marking should be visible at all times.
- 11) For a mounting as indicated in Figure 6, the height A and A1 can be matched, at extra cost, to a maximum variation of ± 0.01 mm.
- 12) After the assembly, make sure that the limit switch trips before the cages hit the screws or the end pieces.

Fig. 6

N.B.: Nella fase di precarico accertarsi che le gabbie siano sempre dietro il grano di registro sul quale si sta agendo.

Note: During the preloading phase the cage must always be behind the preloading screw that is adjusted. Also, in case of heavy mobile portion, provision must be taken to neutralize the weight. If this is not done, the preloading operation will be more complex and the correct setting of preload very difficult to achieve.

Condizioni ideali per il montaggio delle guide/ Mounting recommendations

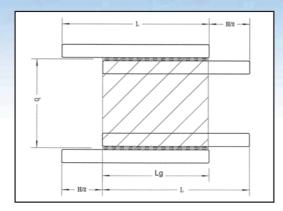


Fig. 7

Calcolo della lunghezza delle gabbie

Q = Interasse

t = Passo dei rulli

L = Lunghezza guida

P = Forza agente sul sistema di guide

H = Corso

C = Massimo carico dinamico unitario

Lg = Lunghezza gabbia

NR = Numero dei rulli

Supponiamo di aver scelto il tipo di guida GR9 400 in quanto la ns. corsa è: C = 250 mm. La lunghezza della gabbia sarà data dalla relazione Lg = L $-\frac{H}{2}$ = 400 - (250 : 2) = 275 mm

N.B.: Nella scelta della lunghezza della guida, in funzione di una determinata corsa, si devono tenere in considerazione i seguenti punti:

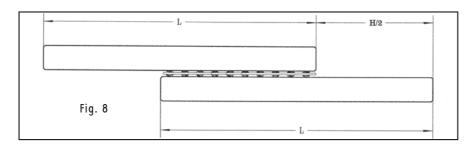
1) se la guida avrà una lunghezza fino a 400 mm saranno accettabili tutte le corse da 1 mm a 2/3 della lunghezza della guida stessa;
2) se la guida avrà una lunghezza oltre 400 mm saranno accettabili tutte le corse da 1 mm fino alla stessa lunghezza della guida.
Se ne deduce che in una slitta formata da quattro guide di uguale lunghezza, per es. pari a 500 mm, la parte mobile potrà sporgere della metà della propria lunghezza (condizione limite) fig. 8.

Determination of cage length

Assuming to choose the rail type GR9 400 with a stroke length ${\it H}$ = 250 mm.

The cage length is determined by the following relationship:

$$Lg = L - \frac{H}{2}$$


Thus, Lg = 400 - (250/2) = 275 mm

Note: The selection of a specific rail length, as a function of given stroke, should satisfy the following requirements:

1) If the rail length will be up to 400 mm, all strokes between 1 mm and 2/3 of the rail length will be possible.

2) If the rail length will be more than 400 mm, all strokes between 1 mm and the length of the rail will be possible.

Based on the above, in a system riding on four rails of equal length (500 mm) the moving portion could overhand 1/2 of its length (condition limit) Fig. 8.

Calcolo del numero dei rulli di una gabbia e della relativa capacità di carico

Dalla relazione precedente Lg = 275 mm Tipo quida GR9 - Rullo diam. 9 mm

Analizzando la tabella "Dimensioni gabbie" a pag. 20 troveremo il valore del passo "t" relativo al rullo in esame = 18 mm quindi
NR = 275 : 18 = 15.

È molto importante considerare che i rulli portanti sono esattamente la metà di 15 in quanto alternati. La massima capacità di carico del sistema, essendo quest'ultimo composto da n. 2 gabbie, equivale alla sommatoria dei rulli in una sola gabbia.

Essendo C = 1300 N capacità di carico di un rullo (vedi tabella dimensioni gabbie a pag. 20), la capacità di carico totale del sistema sarà: $C \times NR = 1300 \times 15 = 19.500 N$.

Determination of the number of rolling elements and the load rating of cage

From the previous example, Lg = 275 mm Rail type GR9

Roller diameter 9mm

Examining the table on Page 20 to obtain the value of the pitch relative to the cage/roller in exam.

t = 18 mm thus, the number of roller will be NR = Lg/t = 15

The number of supporting rollers for a cross roller cage will be NR/2. However, the usual assembly requires two rail systems, thus the total capacity will be a function of NR or the number of rollers in one cage, being C = 1300N the load carrying capacity of a roller, (See dimension table on Page 20) the system load rating will be: $C = C \times NR = 1300 \times 15 = 19.500 N$.

Applicazione di guide di diversa lunghezza con gabbie sporgenti/

Applications of rails of different lenght with protruding cages

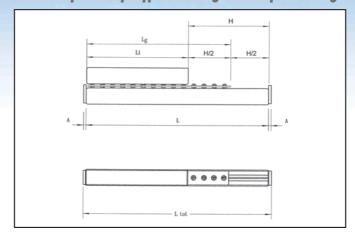


Fig. 9

Nel caso in cui si voglia realizzare un movimento composto da un cursore per esempio lungo 200 mm che scorra su una struttura lunga 800 mm per una corsa H = 600 mm e supposto che i carichi siano stati verificati si dovranno scegliere i seguenti materiali:

- N. 2 quide tipo GR9 800
- N. 2 guide tipo GR9 200 con smussi
- N. 2 gabbie tipo BB9 con 27 rulli
- N. 4 piastrine terminali tipo GC9

In questo caso il calcolo verrà eseguito considerando la lunghezza della quida più lunga quindi:

Lq = L - H/2 = 800 - 300 = 500 mm

NR = Lq/t = 500/18 = 27,77

per cui la gabbia sarà composta da 27 rulli.

Necessitano inoltre gli smussi sulle guide GR9 200 in quanto non devono assolutamente alterare lo scorrimento della tavola quando, spostandosi, entra sui rulli.

La capacità di carico del movimento sarà data dalla capacità di carico di ogni singolo rullo (C) per il numero dei rulli interposti tra le guide (NR) per cui:

NR = L1/t = 200/18 = 11,11 (11 rulli - approssimazione per difetto) per cui essendo

C = 1300 N, sarà 11 x 1300 = 14.300 N.

Per applicazioni del tipo sopra esposto è assolutamente indispensabile creare delle scanalature (vedi quote in tabella a pag. 20 e disegno sottostante) onde potere guidare le gabbie (solo tipi GR). Si ovvia in tal modo allo sbandieramento delle stesse durante il movimento. Nel tipo di applicazione sopra esposto le piastrine terminali tipo GC senza tergipista dovranno essere sempre montate alle estemità della guida lunga.

If, for example, we intend to build a small carrier (200 mm long) which rides on a structure 800 mm long for a stroke of 600 mm, assuming the loads to be of limited magnitude, we could select the following material:

2 rails - GR9 800

2 rails - GR9 200 with chamfers

2 Cages - BB9 with 27 rollers

4 end pieces - GC9

In this case the selection was based on the longer rail, thus

Lq = L - H/2 = 800 - 300 = 500 mm

NR = Lq/t = 500/18 = 27.7 (thus 27 rollers)

We will need also the chamfering of the rails GR9 200 to maintain the smoothness of travel of the table. The load carrying capacity will be based on the number of rollers within the two rails.

NR = L1/t = 200/18 = 11.1 (thus 11 rollers)

Since the load rating is 1300N/roller, the load rating will be:

 $C = 11 \times 1300 = 14300N$

For application similar to the one described above, it is recommended to provide guiding grooves to eliminate the potential cage swerving during motion. (See Fig. 10 and table on Page 20) (only for GR rails)

In the above-mentioned application type, the type GC end plates without wiper shall be assembled at the end of the long rail.

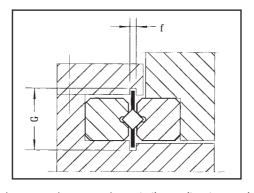


Fig. 10

Applicazioni di questo tipo possono essere realizzate anche con guide ${\sf RM}+{\sf RV}$

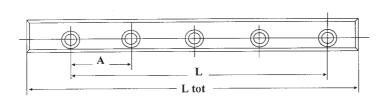
N.B.: Le guide corte dovranno sempre avere gli arrotondamenti (lavorazione supplementare eseguita nel ns. stabilimento).

Similar application can be realized with rails RM + RV Note: The shorter rails should always be chamfered (Additional operation performed at plant).

Esempio di tabella di collaudo per guide GR Inspection table for rails type GR

TAB 001-1 Rev. 2

TABELLA DI COLLAUDO/ INSPECTION TABLE


Guida: GR/ rail type: GR N° di commessa:/ order number:

Data :/ Date : _

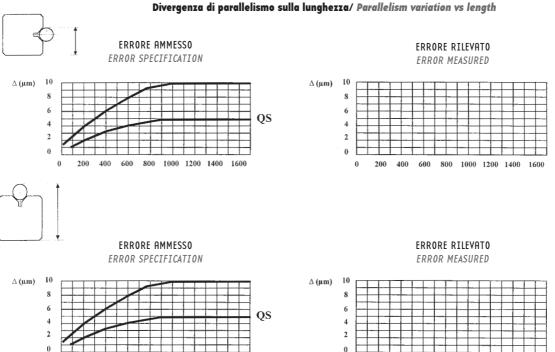
Resp. :/ Resp. : ___

	GR
Errore massimo ammesso/ max error (specification)	± 0,2 mm
Errore rilevato /error (measured)	

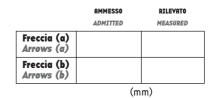
	GR1	GR2	GR3	GR6	GR9	GR12
A	10	15	25	50	100	100
Errore massimo ammesso/ max error (specification)		•	± 0,	3 mm		•
Errore rilevato/ error (measured)						
L		L < 350 mr	n		L > 350 r	nm
Errore max ammesso/ max error (specification)		± 0,3 mm	1		± 0,8 %	00 L
Errore rilevato/ error (measured)						
Errore max ammesso/ max error (specification) sulla lunghezza guida (Ltot)/ on rail's length (Ltot)	Ltot < 3	00 mm ±	0,3 mm	Ltot > 30	00 mm :	± 1 º/∞ Ltot
Errore rilevato/ error (measured)						

Rugosità max ammessa riferita alle piste di rotolamento/ roughness (specification) referred to raceways	0,3 RA
Rugosità rilevata/ roughness (measured)	
Durezza/ hardness (specification)	60 ± 2 HRC
Durezza rilevata/ hardness (measured)	

Esempio di tabella di collaudo per guide GR Inspection table for rails type GR


20025 LEGNANO MI - ITALY -

	GR	GR (QS)
Errore max ammesso X/ max error (specification) X	± 0,005 mm	± 0,0025 mm
Errore rilevato/ error (measured)		



	GR
Errore max ammesso Y/ max error (specification) Y	0 / -0,1 mm
Errore rilevato/ error (measured)	

800 1000 1200 1400 1600

600 400

1000 1200 1400

Esempio di calcolo e verifica dei carichi/ Calculation example

quindi della inuniformità della disposizione dei carichi unitari, sono stati adottati dei coefficienti teorici di sicurezza (CTS) i quali considerano il perfetto contatto dell'elemento volvente con le piste nella quantità indicata in tabella:

A causa delle deformazioni elastiche di un sistema lineare e Due to elastic deformations of a linear system and to the lack of uniformity in the distribution of the unit loads, we resorted to theoretic safety factors (CTS) according to which the close contact between the mobile part and raceways is given by the following quantities:

CTS rulli incrociati/ CTS crossrollers	2
CTS sfere/ CTS balls	4
CTS rullini/ CTS needles	1

Esempio N. 1

Le caratteristiche delle guide, gabbie e corsa, corrispondono alla tavola tipo TR9-310, con carico centrato sulla mezzeria della tavola:

- quide = GR9 300
- corsa = 180 mm
- gabbie = AA9 con 11 rulli
- P = 6000 N
- Lq = 210 mm
- precarico = 10%
- carico al quale è sottoposto agni rulli = $\frac{6000}{1}$ = 545,5 N

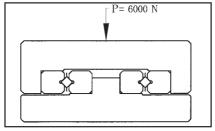
inferiore a C che nel ns. caso corrisponde a 1300 N

peso parte mobile su un rullo = 80 N : 11 (NR) = 7,3 N È necessario inoltre, tener conto del precarico dato alle guide, che espresso in N è il 10% di 545,5 N = 54,6 N La sommatoria delle P che agiscono sulla tavola sotto forme diverse (precarico, carico effettivo, peso ecc.) deve essere

Example 1

Calculation example and load check:

- Rails = GR9 300
- Stroke = 180 mm
- Cages = AA9/11
- Load (P) = 6000 N
- Lg = 210 mm
- Preload = 10%


- Roller load =
$$\frac{6000}{11}$$
 = 545,5 N

Load due to mobile portion NR = 80/11 = 7,3 N.

It is also necessary to take the preload into account.

That is: 10% of 545,5 N = 54,6 N.

The sum of the forces acting on the table (preload, weight, external load, etc.) must be smaller than the capacity C which in this case is 1300 N.

Quindi:

545,5 + 7,3 + 54,6 = 607,4 NVerificato positivamente.

607,4N <1300 N

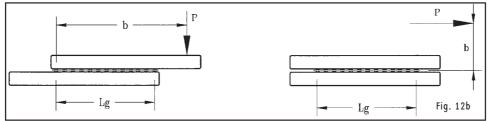
Therefore:

545,5+7,3+54,6=607,4 N

Fig. 11

607,4 N < 1300 N

Thus our selection is verified positively.


Esempio N. 2

Carico posto sulla mezzeria della tavola e a sbalzo sull'asse longitudinale (fig. 12a).

Forza parallela allo scorrimento sulla mezzeria della tavola ad una distanza b (fig. 12b).

Example 2

Loading condition as indicated in Fig. 12a and 12b.

Le caratteristiche delle guide, gabbie a rulli e corsa, corrispondono alla tavola tipo TR6-310, quindi:

= 16 - NRP (numero rulli portanti) = 16:2 = 8- Precarico = 8% (P3) - Peso tavola superiore = 45 N (P2) - Carico applicato = 200 N (P) = 300 mm - h = 180 mm - L₉ - CTS = 2

Rails, cages and stroke characteristics as in table TR6 310

– NRP (number of supporting rollers) = 16:2 = 8 Preload = 8% (P3) - Upper table weight = 45 N (P2)– External load = 200 N (P)- b = 300 mm = 180 mm — Lq - CTS = 2

Esempio di calcolo e verifica dei carichi/ Calculation example

Il calcolo da eseguire vale sia per la fig. 12a quanto per la fig. 12b e tiene conto delle seguenti relazioni:

P1 = $\frac{Pxb}{LgxCTS}$ = $\frac{200x300}{180x2}$ = 166,7 N

P2 = 45 N : 16 = 2,8 N

P3 = 8% x 166,7 = 13,3 N

 $\Sigma P = P1 + P2 + P3 = 166,7 + 2,8 + 13,3 = 182,8 \text{ N} < 530 \text{ N}$

530 N rappresentano la capacità di carico max. ammissibile di un rullo diametro 6 (vedi tabella a pag. 20).

Questo tipo di calcolo tiene conto solo dei rulli posti alle estremità e quindi della situazione di lavoro meno favorevole. È anche vero che se solo i rulli alle estremità fossero sottoposti al carico massimo, le guide e la struttura sulla quale sono fissate dovrebbero deformarsi permanentemente.

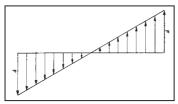
Avremo in tal modo un carico massimo alle estremità che decrescerà nel centro sino a raggiungere un valore prossimo allo 0 (vedi fig. 13).

This calculation is valid for both cases 12a e 12b

$$P1 = \frac{Pxb}{CxCTS} = \frac{200x300}{180x2} = 166,7 \text{ N}$$

P2 = 45 N/16 = 2,8 N

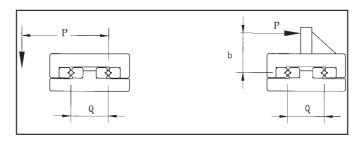
P3 = 8% x 166,7 N = 13,3 N


 $\Sigma P = P1 + P2 + P3 = 166,7 + 2,8 + 13,3 = 182,8 \text{ N} < 530 \text{ N}$

where 530 N is the load rating for a roller diameter of 6 mm (Table on Page 20)

This calculation is valid for the roller at the two extremities of the cage, thus it represents the worst condition. In addition, if only the roller of the extremities would be under load, both rails and structure would deform permanently.

Therefore, it is safe to assume that the load distribution is similar to the one depicted in Figure 13.


Esempio N. 3

Forza posta lateralmente a sbalzo e normale alla struttura superiore della tavola (fig. 14a). Forza posta a sbalzo, normale al fianco e parallela alla struttura superiore della tavola (fig. 14b).

Example 3

Loading condition as shown.

Le caratteristiche delle guide, gabbie e corsa corrispondono alla tavola tipo TR3-155, quindi:

b = 120 mm

Q = 28 mm

NR = 21

NRP = 21/2 = 10,5 che considereremo 10

P3 precarico = 10%

P2 peso tavola superiore = 7 N

C = 130 N rullo.

Abbiamo inoltre una P indicata sulle 2 figure = 160 N posta a mm 120. Per calcolare quale sia la forza che agisce su ogni rullo si esegue il seguente rapporto tra il momento reagente e quello resistente:

P1 =
$$\frac{Pxb}{QxNRP}$$
 = $\frac{160x120}{28x10}$ = 68,6 N

P2 = 0,33 N

P3 = 10% di 68,6 = 6,86 N

 $\Sigma P = P1 + P2 + P3 = 68,6 + 0,33 + 6,86 = 75,8 N < 130 N$ C rullo diametro 3 = 130 N (vedi tabella a pag. 20).

N.B.: per applicazioni non contemplate nel catalogo interpellate il ns. ufficio tecnico.

The rails, cages and stroke characteristics as in table TR3-155

Fig. 14b

= 160 N

$$P1 = \frac{Pxb}{QxNRP} = \frac{160x120}{28x10} = 68,6 \text{ N}$$

P2 = 0.33 N

P3 = 10% 68.6 = 6,86 N

 $\Sigma P = P1 + P2 + P3 = 75,8 \text{ N} < 130 \text{ N}$

where 130 N is the load rating for a roller diameter of 3 mm (Table on Page 20)

Therefore our system loading checks out.

Note: For applications not shown, please refer to our Engineering office.

Guide "GR" a rulli incrociati o a sfere Rails "GR"

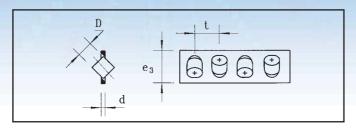

Le guide tipo GR sono dei cuscinetti lineari il cui movimento può avvenire su rulli incrociati o su sfere. La differenza sostanziale è la diversa capacità di carico tra rulli e sfere che si può esprimere con un rapporto di circa 10: 1 variabile a seconda del diametro dell'elemento volvente preso in considerazione. La sfera ha il vantaggio di un miglior funzionamento nella malaugurata eventualità in cui dovessero entrare delle impurità sulle piste di rotolamento, come nel caso in cui non venga rispettata la geometria delle lavorazioni della struttura sulla quale sono ancorate le guide, obbligandole ad una posizione non corretta. Queste guide hanno delle buone capacità di carico in funzione delle sezioni, della lunghezza e delle relative corse.

Le stesse offrono inoltre la possibilità di realizzare movimenti con ingombri minimi. A seconda del tipo di applicazione, orizzontale, ribaltata o verticale vengono utilizzate gabbie e terminali diversi (vedi pag. 20 e 21). GR type linear system bearings could utilize either cross roller or ball as rolling elements. The two will differ substantially in load ratings. The ratio is approximately 10 to 1 in favor of rollers, depending upon the dimention under consideration.

Balls are more advantageous in case of presence of impurities and/or misalignment as it happens when the structure, to which rails are anchored, is not sturdy enough to support them and rails are not therefore placed in their correct position. Such systems offer good load rating with respect to the cross section, lenght and relative stroke. They utilize different cages and end pieces depending upon the application.

Guide "GR" a rulli incrociati o a sfere/ Standardized Cross Rails "GR"

Denominazione Designation	Tipo guida Rail Type	Peso guida in gr. Rail Weight (g)	ι	g	c	D	A	В	J	С	e	f	V	М
GR1	GR 1 020 GR 1 030 GR 1 040 GR 1 050 GR 1 060 GR 1 070 GR 1 080 GR 1 090 GR 1 100 GR 1 120 GR 1 140	02 03 04 05 06 07 08 09 10 12	20 30 40 50 60 70 80 90 100 120	1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10 9x10 11x10 13x10	5	1,5	8,5	4	3,9	1,8	M2	1,65	3	1,4
GR2	GR 2 030 GR 2 045 GR 2 060 GR 2 075 GR 2 105 GR 2 120 GR 2 135 GR 2 150 GR 2 180 GR 2 210	06 09 12 15 18 22 25 28 31 37 44	30 45 60 75 90 105 120 135 150 180 210	1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15 9x15 11x15 13x15	7,5	2	12	6	5,5	2,5	М3	2,5	4,3	2,0
GR3	GR 3 050 GR 3 075 GR 3 100 GR 3 125 GR 3 150 GR 3 175 GR 3 200 GR 3 225 GR 3 250 GR 3 275 GR 3 300	23 34 45 56 67 78 89 100 111 122 133	50 75 100 125 150 175 200 225 250 275 300	1x25 2x25 3x25 4x25 5x25 6x25 7x25 8x25 9x25 10x25 11x25	12,5	3	18	8	8,2	3,5	M4	3,3	6	3,2


Guide "GR" a rulli incrociati o a sfere/ Standardized Cross Rails "GR"

Denominazione	Tipo guida	Peso guida in gr.												
Designation	Rail Type	Rail Weight (g)		g	С	D	A	В	J	С	е	f	٧	М
	GR 6 100	145	100	1x50										
	GR 6 150	220	150	2x50										
	GR 6 200	295	200	3x50										
	GR 6 250	370	250	4x50										
	GR 6 300	445	300	5x50										
GR6	GR 6 350	520	350	6x50	25	6	31	15	13,9	6	M6	5,2	9,5	5,2
	GR 6 400	595	400	7x50										
	GR 6 450	670	450	8x50										
	GR 6 500	745	500	9x50										
	GR 6 550	815	550	10x50										
	GR 6 600	885	600	11x50										
	GR 9 200	630	200	1x100										
	GR 9 300	945	300	2x100										
	GR 9 400	1260	400	3x100	50									
	GR 9 500	1575	500	4x100									10,5	
	GR 9 600	1890	600	5x100										
GR9	GR 9 700	2205	700	6x100		9	44	22	19,7	9	M8	6,8		6,2
	GR 9 800 GR 9 900	2520 2835	800 900	7x100 8x100										
	GR 9 1000	3150	1000	9x100										
	GR 9 1100	3465	1100	10x100										
	GR 9 1200	3780	1200	11x100										
	J. 1200	""												
	GR12 200	1040	200	1x100										
	GR12 300	1565	300	2x100										
	GR12 400	2090	400	3x100										
	GR12 500	2615	500	4x100										
	GR12 600	3140	600	5x100										
GR12	GR12 700	3665	700	6x100	50	12	58	28	25,9	12	M10	8,5	13,5	8,2
	GR12 800	4190	800	7x100										
	GR12 900	4715	900	8x100										
	GR12 1000	5240	1000	9x100										
	GR12 1100	5765	1100	10x100										
	GR12 1200	6290	1200	11x100										

Gabbie/ Cages

Tipo CC

A rulli incrociati non trattenuti per guide GR1-GR2, per corsa orizzontale e verticale, solo passo t; mat: ottone.

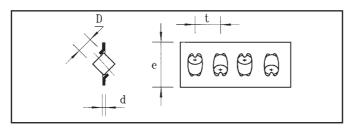


Тур СС

No-captive cross roller cage for horizontal and vertical applications for rails GR1-GR2; only standard t pitch; material: brass

Tipo AA

A rulli incrociati trattenuti per guide GR2÷GR12 per corsa orizzontale; solo passo t; mat: lamierino in acciaio.

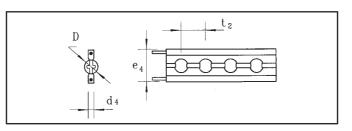


Тур 🗚

Captive cross roller cage for horizontal application. Sizes 2 ÷ 12; only standard t pitch; captive rollers; sheet metal.

Tipo BB

A rulli incrociati trattenuti per guide GR3÷GR9 per corsa orizzontale e verticale solo con guide di diversa lunghezza e con velocità basse; solo passo t; mat: lamierino in acciaio (vedere pag. 12 fig. 10).

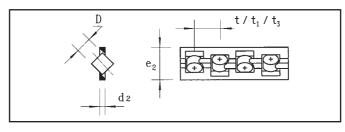


Тур ВВ

Captive cross roller cage for horizontal and vertical applications with Rails of different lenght with low speed. Sizes 3 ÷ 9; only standard t pitch; captive rollers; sheet metal.

Tipo PS

A sfere trattenute per guide GR1÷GR12, per corsa orizzontale e verticale; solo passo t2; mat: poliammide. PS6÷PS12 rinforzate con anima in acciaio.



Typ PS

Captive ball cage for GR1 ÷ GR12 rails for horizontal and vertical applications; only t2 pitch; material: polyamide. PS6 ÷ PS12 reiforced with steel.

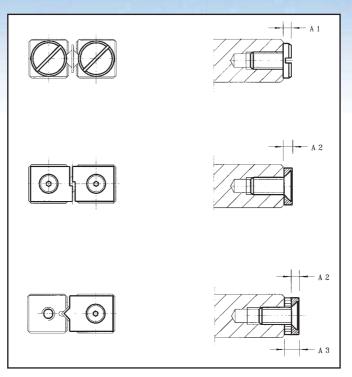
Tipo PR

A rulli incrociati trattenuti per guide GR1÷GR9, per corsa orizzontale e verticale; solo passo t per guida da GR1 a GR3 e passo t1 per GR9; passo t3 per GR6; mat: poliammide.

Typ PR

Captive cross roller cage for GR1 ÷ GR9 rails for horizontal and vertical applications; GR1 ÷ GR3 t pitch; GR6 t3 pitch and GR9 t1 pitch; material: polyamide.

																C ((N)
Tipo guida Designation	D	t	t1	t2	t3	d	d2	d4	f*	e	e1	e2	е3	e4	G*	C rullo C roller	C sfera C ball
GR 1	1,5	3	-	2,2	_	0,5	0,5	0,45	-	-	-	3,8	3,5	3,5	-	50	9
GR 2	2	4	-	4	_	0,8	0,8	0,75	-	_	5,5	5,5	5,5	5	_	85	15
GR 3	3	5	-	4,2	_	0,5	1	1	1	12	7,5	7	-	7	13	130	25
GR 6	6	12	9	9	8,5	0,8	2,7	2,5	1,5	20	14	15	-	14	21	530	65
GR 9	9	18	14	14	_	1	4	3,2	2	30	19,5	20	_	20	32	1300	150
GR12	12	22	18	15,5	_	1,2	4	4	2,5	35	25	25	_	20	37	2500	260
		I	1	1	1	1	I	1	I	1	i 1		1	I	1	1	1


^{*} Riferimento a pag. 12 fig. 10./ * With reference to page 12 figure 10

Terminali/ End pieces

GA = Per applicazioni orizzontali

- GB = Per applicazioni
 verticali e orizzontali
 con accelerazioni
 (Non disponibile per
 guida tipo GR1)
- GC = Per applicazioni
 orizzontali, verticali e
 con guide di diversa
 lunghezza con o senza
 tergipista (montaggio
 sulle guide più lunghe)
 (Non disponibile per
 guida tipo GR1 e GR2)

GA = For horizontal applications

- GB = For horizontal and vertical applications with high accelerations (not available for GR1 rails)
- GC = For horizontal and vertical applications with or without wipers. Mounted only on the longer rails (not available for GR1 ÷ GR2 rails)

Tipo guida/ Rail Type	GR1	GR2	GR3	GR6	GR9	GR12
A1	1,5	2	2	3	3	3
A2	-	3	2	3	4	5
A3	-	-	3	5	6	8

Viti di ancoraggio con gambo scaricato/ Mounting screws with modified stem

I vantaggi ottenibili con dette viti sono i seguenti:

- la possibilità di montare le guide anche dove la struttura portante non è stata forata nel modo più perfetto;
- l'eliminazione degli errori da foro a foro che inevitabilmente si vengono a creare sulla guida durante il trattamento termico;
- la possibilità di applicazione delle guide nel caso in cui per la guida registrabile siano usate viti passanti (vedi fig. n. 15).

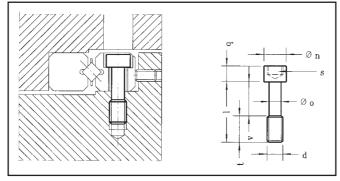


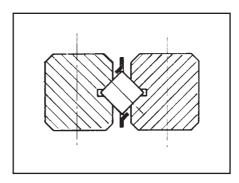
Fig. 15

These screws offer the following advantages:

- Compensation for pitch errors in the supporting structure.
- Compensation for pitch variation during heat treating.
- Elimination of clearance through lateral screws.

Dimensioni/ Dimension	GR3	GR6	GR9	GR12
	12	20	30	40
Øn	5	8	8,5	11,3
Øo	2,3	3,9	4,6	6,25
d	М3	M5	M6	M8
q	3	5	6	8
v	7	12	18	23
t	5	8	12	17
S	2,5	4	5	6
Codice/ Code	VM3	VM5	VM6	VM8

Esempi di ordinazione/ Ordering examples

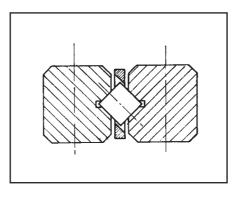

Per facilitare gli uffici acquisti e per snellire le ordinazioni e quindi le consegne, Vi consigliamo di comunicarci i seguenti dati: tipo e n. delle guide, tipo e n. delle gabbie, n. dei rulli per gabbia, o lunghezza gabbia o corsa, tipo e n. delle viti o piastrine terminali, tipo di applicazione se orizzontale o verticale; considerando che un movimento completo è composto da: n. 4 guide, n. 2 gabbie e n. 8 viti o piastrine terminali.

To simplify the ordering, thus the delivery, the following examples should be followed. We assumed, like in most cases, that one table utilizes 4 rails, 2 cages and 8 end pieces. Therefore, the information required should include:

- Number and type of rail
- Number and type of cage
- Number of rolling elements in each cage or cage length or stroke
- Number and type of end pieces
- Type of application (horizontal or vertical)

Per movimenti orizzontali a rulli

Guide GR3 125 Corsa = 35 mm 4 guide tipo GR3 125 2 gabbie tipo AA3 con 21 rulli 8 viti terminali tipo GA3

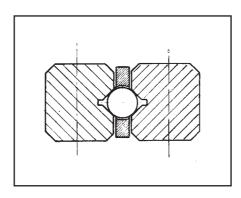


For horizontal movement (rollers)

System GR3 125 Stroke = 35 mm 4 Rails GR3 125 2 Cages AA3 with 21 rollers 8 End pieces GA3

Per movimenti verticali a rulli

Guide GR6 300 Corsa = 120 mm 4 guide tipo GR6 300 2 gabbie tipo PR6 con 28 rulli 8 piastrine terminali tipo GB6



For vertical movement (Rollers)

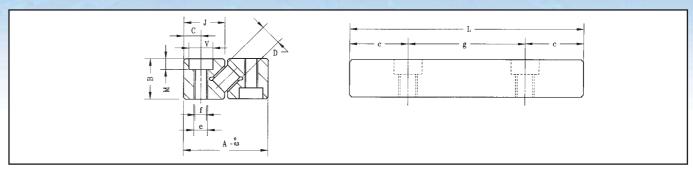
System GR6 300 Stroke = 120 mm 4 Rails GR6 300 2 Cages PR6 with 28 rollers 8 End pieces GB6

Per movimenti orizzontali e verticali a sfere con piastrine terminali e tergipista

Guide GR9 400 Corsa = 185 mm 4 guide tipo GR9 400 2 gabbie tipo PS9 con 22 sfere 8 piastrine terminali tipo GC9 con tergipista

For horizontal & vertical movement (Balls) and wipers

System GR9 400 Stroke = 185 mm Reduced Pitch t1 4 Rails GR9 400 2 Cages PS9 with 21 balls 4 End pieces with wiper GCT9

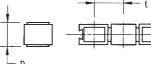

Guide"NG"/ Rails "NG"

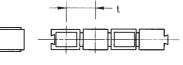
L'evoluzione delle guide GR ha portato alla realizzazione di guide dimensionalmente più piccole di sezione ma con migliori caratteristiche di capacità di carico e quindi di rigidità. Questo nuovo tipo di guida, denominata NG, prevede due tipi di sezione le cui dimensioni sono riportate nella pagina seguente.

The present evolution of the GR type is passing through the realization of guideways that in spite of their smaller section are performing better features in respect of the carrying capacity and therefore of stiffness. This new kind of guideway named NG has two different sections whose dimensions are stated in the following page.

Guide "NG"/ Rails "NG"

Denominazione Denomination	Tipo guida <i>Guideway</i> type	Peso Weight in g	L	g	с	D	A	В	J	С	e	f	V	М
	NG 4 050	27	50	1x25										
	NG 4 075	41	75	2x25										
	NG 4 100	55	100	3x25										
	NG 4 125	69	125	4x25										
	NG 4 150	83	150	5x25										
NG 4	NG 4 175	97	175	6x25	12,5	4,5	19	9	9	3,5	М3	2,65	5,5	2,7
	NG 4 200	111	200	7x25										
	NG 4 225	125	225	8x25										
	NG 4 250	139	250	9x25										
	NG 4 275	153	275	10x25										
	NG 4 300	167	300	11x25										
	NG 6 100	92	100	3x25										
	NG 6 150	138	150	5x25										
	NG 6 200	184	200	7x25										
NG 6	NG 6 250	230	250	9x25	12,5	6,5	25	12	12	5	M4	3,3	7	3,2
	NG 6 300	276	300	11x25										
	NG 6 350	322	350	13x25										
	NG 6 400	368	400	15x25										

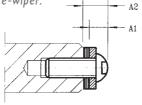

GABBIE/CAGES


Tipo BN/Type BN A rulli trattenuti; per corsa orizzontale e verticale.

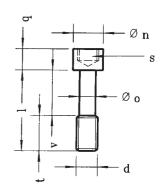
Materiale: delrin

With retained rollers; for horizontal and vertical stroke Material: delrin

Tipo guida Rail Type	Tipo gabbia Cage Type	t	D	C (N)
NG 4	BN 4	6,5	4,5	850
NG 6	BN 6	8,5	6,5	1800


PIASTRINE/ ENDPIECES

NB = per applicazioni orizzontali e verticali for horizontal and vertical application


NC = per applicazioni con guide di diversa lunghezza. Vengono applicate sulle guide più lunghe. Possono essere corredate da tergipista

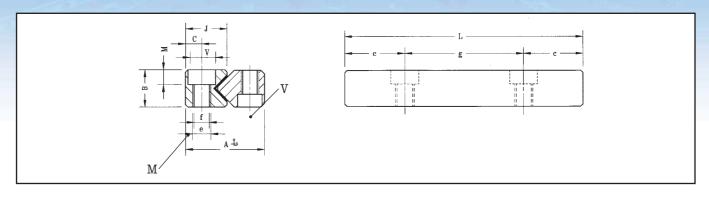
for applications with guideways of different length. They are mounted on the longest guideways. They can be provided with race-wiper.

Tipo guida/Rail Type	A1	A2
NG 4	4	5,5
NG 6	4	5,5

Dimensioni/Dimensions	NG 4	NG 6
I	12	16
Øn	4,5	5,5
Øo	1,85	2,3
d	M2,5	М3
q	2,5	3
٧	7	11
t	5	5
S	2	2,5
Codice/Code	VBN 4	VBN 6

Guide "M/V"/ Rails "M/V"

Le guide lineari tipo M/V sono guide con riporto di materiale antifrizione le cui caratteristiche sono identiche alle guide RVA. Sostituiscono dimensionalmente le guide GR migliorandone chiaramente la rigidità. Sono indifferenti allo sporco e vengono utilizzate soprattutto per eliminare eventuali vibrazioni del sistema.


La capacità di carico unitaria per cm2 varia da 4500 N (dinamico) a 7500 N (statico). M/V linear guideways have an antifriction material coating and keep identical characteristics than RVA's models. As for the dimensions are concerned, they replace the guideways GR but clearly improving their stiffness. These dirt-proof units are used above all to exclude any vibration of the system.

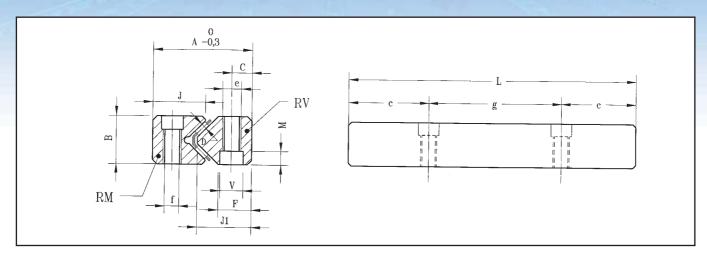
Load capacity per unit in cm 2 changes from 4500 N (dynamic) \div 7500 N (static).

Tipo guida/Rail type	Larghezza fascia d'appoggio/Width of bearing surface
M3	0,3 cm
M6	0,6 cm
M9	1,2 cm
M12	1,6 cm

Guide "M/V"/ Rails "M/V"

Denominazione Denomination	Tipo guida Guideway type	Peso in g (M) Weight in g (M)	Peso in g (V) Weight in g (V)	L	g	c	A	В	J	J1	С	e	f	v	М
	3 050	19	25	50	1x25										
	3 075	30	38	75	2x25										
	3 100	41	51	100	3x25										
	3 125	52	64	125	4x25										
	3 150	63	77	150	5x25										
M/V	3 175	74	90	175	6x25	12,5	18	8	9	10,8	3,5	M4	3,3	6	3,1
	3 200	85	103	200	7x25										
	3 225	96	116	225	8x25										
	3 250	107	129	250	9x25										
	3 275	118	142	275	10x25										
	3 300	130	155	300	11x25										
	6 100	145	175	100	1x50										
	6 150	218	263	150	2x50										
	6 200	290	350	200	3x50										
	6 250	363	438	250	4x50										
M/V	6 300	435	525	300	5x50	25	31	15	16	19,3	6	M6	5,3	10	5,2
	6 350	508	613	350	6x50										
	6 400	580	700	400	7x50										
	6 450	653	788	450	8x50										
	6 500	725	875	500	9x50										
	9 200	640	770	200	1x100										
	9 300	955	1156	300	2x100										
	9 400	1270	1543	400	3x100										
	9 500	1585	1930	500	4x100										
M/V	9 600	1900	2316	600	5x100	50	44	22	24	28	9	M8	6,8	11	6,2
	9 700	2215	2703	700	6x100										
	9 800	2530	3089	800	7x100										
	9 900	2845	3476	900	8x100										
	9 1000	3160	3862	1000	9x100										
	12 200	1130	1224	200	1x100										
	12 300	1690	1836	300	2x100										
	12 400	2250	2448	400	3x100										
	12 500	2810	3060	500	4x100										
	12 600	3370	3672	600	5x100										
M/V	12 700	3930	4284	700	6x100	50	58	28	33	35,5	12	M10	8,5	15	8,2
	12 800	4490	4896	800	7x100										
	12 900	5050	5508	900	8x100										
	12 1000	5610	6120	1000	9x100										
	12 1100	6175	6732	1100	10x100										
	12 1200	6740	7244	1200	11x100										

Guide "RM"E "RV"/ Rails "RM" E "RV"


Per le guide RM/RV a rullini, valgono gli stessi criteri di calcolo usati per le quide GR tenendo conto della diversità delle gabbie (in plastica componibili per applicazioni orizzontali, in metallo per applicazioni verticali ed orizzontali). Nei riquadri a pag. 29 si possono rilevare: il dimensionamento delle gabbie e le capacità di carico relative. Le guide RM/RV si differiscono dai tipi GR per le seguenti caratteristiche: 1) Capacità di carico notevolmente a favore delle prime. 2) Costruzione di tavole con una elevata rigidità superiore ai tipi GR in quanto il passo dei rullini è minimo, con una consequente maggiore continuità di rotolamento. 3) Miglior funzionamento nei casi in cui la corsa sia di piccola entità in quanto un rullo di piccolo diametro riesce a lavorare su tutta la sua circonferenza. Inoltre c'è la possibilità di precaricare con più N, perché come già detto, le quide RM/RV sopportano carichi elevatissimi ed il precarico, percentualmente, è in funzione di quest'ultimi. 4) È molto importante, ancor più che nei tipi GR a rulli incrociati, curare il sistema di protezione delle guide.

The same calculation criteria used for GR rails is valid for the rails RM/RV. However, the different cage designs (plastic for horizontal application and brass for both horizontal & vertical applications) should be accounted for.

- 1) Higher load ratings
- 2) Higher rigidity
- 3) Better overlapping of the rollers, especially in case of short stroke
- 4) Higher sensibility to mounting errors and impurities.

Guide "RM/RV"/ Rails "RM/RV"

Denominazione Denomination	Tipo guida Guideway type	Peso in g (M) Weight in g (M)	Peso in g (V) Weight in g (V)	L	g	c	D	A	В	F	J1	J	С	e	f	v	М
RM/RV	92025- 200 92025- 300 92025- 400 92025- 500 92025- 600 92025- 700 92025- 800	685 1020 1355 1690 2025 2360 2695	695 1030 1365 1700 2035 2370 2705	200 300 400 500 600 700 800	1x100 2x100 3x100 4x100 5x100 6x100 7x100	50	2	44	22	15	24,5	24	9	M8	6,8	10,5	6,2
	92025- 900 92025-1000 92025-1100 92025-1200	3030 3365 3700 4035	3040 3375 3710 4045	900 1000 1100 1200	8x100 9x100 10x100 11x100												
RM/RV	2025- 200 2025- 300 2025- 400 2025- 500 2025- 600 2025- 700 2025- 800 2025- 900 2025- 1000 2025-1100 2025-1200	900 1365 1830 2295 2760 3225 3690 4155 4620 5085 5550	900 1350 1800 2250 2700 3150 3600 4050 4500 4950 5400	200 300 400 500 600 700 800 900 1000 1100 1200	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	2	52	25	18	29	28	10	M10	8,5	13,5	8,2
RM/RV	2535-300 2535-400 2535-500 2535-600 2535-700 2535-800 2535-900 2535-1000 2535-1100 2535-1200	1905 2540 3175 3810 4445 5080 5715 6350 6985 7620	1965 2620 3275 3930 4585 5240 5895 6650 7205 7860	300 400 500 600 700 800 900 1000 1100 1200	2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	2,5	62	30	22	35	34	12	M12	10,5	16,5	10,
RM/RV	3045-400 3045-500 3045-600 3045-700 3045-800 3045-900 3045-1000 3045-1100 3045-1200	3660 4575 5490 6405 7320 8235 9150 10065 10980	3460 4325 5190 6055 6920 7785 8650 9515 10380	400 500 600 700 800 900 1000 1100 1200	3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	3	74	35	25	40	42,5	14	M14	12,5	18,5	12,
RM/RV	3555-500 3555-600 3555-700 3555-800 3555-900 3555-1000 3555-1100 3555-1200	6170 7410 8650 9890 11130 12370 13610 14850	6100 7320 8540 9760 10980 12200 13420 14640	500 600 700 800 900 1000 1100 1200	4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	3,5	78	45	25	45	45	14	M14	12,5	18,5	12,

È possibile fornire guide RM e RV in un solo pezzo limitatamente ad una lunghezza di mm 1600. Per applicazioni verticali sono disponibili guide e gabbie a trascinamento forzato.

The supply of RM and RY rails as one single piece up to a maximum lenght of 1600 mm is available. Are also available for vertical application rails and cages with forced drag.

Descrizione delle gabbie a rullini/ Description of needle cages

Le quide tipo RM/RV devono essere corredate di gabbie a rullini. I rullini sono selezionati disponendo di una tolleranza sul diametro pari a 0,001 mm. Per quanto riquarda l'ingombro, quote e caratteristiche si consulti la tabella relativa sottostante.

Rails type RM/RV can be equipped with needle cages. The rollers in the cages are selected within 0.001 mm.

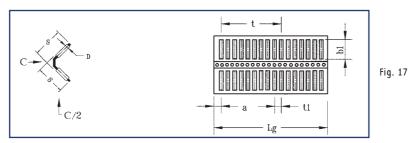
Calcolo della lunghezza della gabbia e della capacità di carico Determination of cage length & load rating with protruding cages

Prendiamo in esame guide tipo RM/RV 2025-500 per ottenere una corsa di mm 200 e con un carico applicato di P = 15.000 N

Per il calcolo della lunghezza della gabbia vale sempre la formula Lg = L - $\frac{H}{2}$ per cui Lg = 500 - 200/2 = 400 mm

Ne deriva che se la C/t è di 8.680 N, la capacità di carico dell'intero sistema sarà di 104.160 N

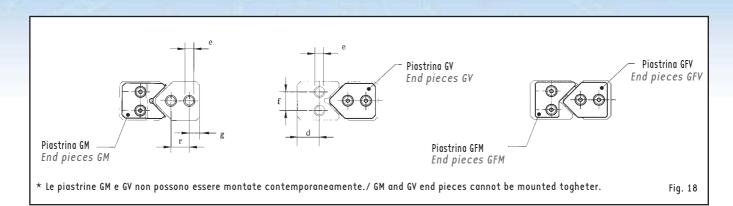
A questo punto si deve verificare sempre la condizione: C > P quindi 104.160 N > 15.000 N.

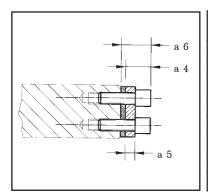

The type in exam is RM/RV 2025-500. The stroke is 200 mm and the load 15.000 N.

For the calculation of the cage length, the formula Lg = L - H/2 is valid.

Thus, Lg = 500 - 200/2 = 400 mm.

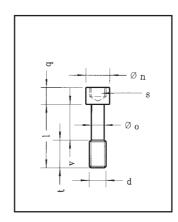
Therefore, if the rating C/t is 8680 N the system rating will be 104.160 N.


The condition C>P: 104.160>15.000 N should also be verified.



Tipo guida/ Rail type	Tipo gabbia/ <i>Cage</i> Type	Ø D	b ₁	S	t	tı	α	N° rulli x t/ N° rollers x t	C/t (N)
9 2025-2025	HW15	2	6,8	15	32	4,5	2	7	8680
2535	HW20	2,5	9,8	20,5	45	5,5	2,4	8	17920
3045	HW25	3	13,8	26	60	6	3	9	33750
3555	HW30	3,5	17,8	31,5	75	7	3,2	10	55000

Piastrine terminali con/senza tergipista per corsa orizzontale e verticale


End pieces with or without wiper for horizontal & vertical stroke

	RM/RV 9-2025	RM/RV 2025	RM/RV 2535	RM/RV 3045	RM/RV 3555
α4	8	9	11	11	11
α5	4	3	3	3	3
a6	10	11	13	13	13
е	M4	M6	M6	M6	M6
f	10	14	18	19	29
r	10	11	12	16	20
d	11	12	15	18	18
g	6	7	8	10	12

Viti di ancoraggio con gambo scaricato/ Fixing screws

	RM/RV 9 2025	RM/RV 2025	RM/RV 2535	RM/RV 3045	RM/RV 3555	
- 1	30	40	40	50	60	
Øn	8,5	11,3	13,9	15,8	15,8	
0 0	4,6	6,25	7,9	9,5	9,5	
d	M6	M8	M10	M12	M12	
q	6	8	10	12	12	
٧	18	23	22	25	35	
t	12	17	18	25	25	
s	5	6	8	10	10	
codice	VM6	VM8	VM10	VM12	VM12/L	

Esempi di ordinazione/ Ordering example

Per movimenti verticali guide tipo RM/RV 2535 700

Corsa = 480 mm

2 guide tipo RM 2535 700

2 guide tipo RV 2535 700

2 gabbie tipo HW 20 L = 460 mm

4 piastrine terminali tipo GM 2535

For vertical movement rails type RM/RV 2535-700 stroke = 480 mm.

2 rails type RM 2535-700

2 rails type RV 2535-700

2 cages type HW 20 LG = 460 mm

4 end pieces type GM 2535

Per movimenti orizzontali e verticali con guide di diversa lunghezza tipo RM 3045 400 abbinate a guide tipo RV 3045 800 Corsa = 400 mm 2 guide tipo RM 3045 400 complete di smussi d'invito

2 quide tipo RV 3045 800

2 gabbie tipo HW 25 L = 600 mm

4 piastrine terminali tipo GV 3045

For horizontal & vertical movement - rails of different length type RM 3045-400 match with rails type RV 3045-800 stroke = 400 mm.

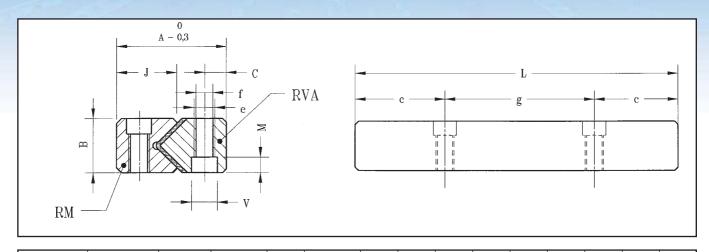
2 rails type RM 3045-400 chamfered

2 rails type RV 3045-800

2 cages type HW 25 Lg = 600 mm

4 end pieces type GV 3045

Guide"RVA"/ Rails "RVA"


Ad integramento delle guide RM/RV, si possono fornire set completi di guide RM accoppiate con guide RVA le cui piste di lavoro sono ricoperte con riporti di materiale antifrizione. Questo tipo di guida è utilizzato dove le velocità non siano eccessivamente elevate (max. 20 m/min) e dove si abbia la necessità di ottenere un'ottima rigidità del sistema di scorrimento. Il set di guide completo è composto da due guide RM temprate a cuore e da due RVA con riporto di materiale antifrizione. Per le medesime caratteristiche dimensionali le guide RV con la relativa gabbia e le RVA sono perfettamente intercambiabili fra di loro. È importante che la temperatura di esercizio non superi i 50°C. La capacità di carico unitario per cm² varia da 4500 N (dinamico) a 7500 N (statico). È possibile inoltre predisporre dei fori a richiesta e le relative canaline di lubrificazione.

This rail type completes the system RM/RV. The RVA has the raceways coated with antifriction material. This type is used when the speed is relatively low (20 m/min max) and the rigidity of the system is critical. A set is composed of two rails RM ant two rails RVA. The rails RVA and RV are dimensionally interchangeable. In order to have a good functioning, the temperature of working must be inferior to 50° . Load capacity per unit in cm² changes from 4500~N (dynamic) $\div~7500~\text{N}$ (static). Holes and oil grooves can be carried out on request on the type RVA rails.

Tipo di guida/ <i>Rail type</i>	Larghezza fascia d'appoggio/ Width of bearing surface
RVA 9 2025	1,05 cm
RVA 2025	1,15 cm
RVA 2535	1,5 cm
RVA 3045	1,75 cm
RVA 3555	2,45 cm

Guide "RM & RVA"/ Rails "RM & RVA"

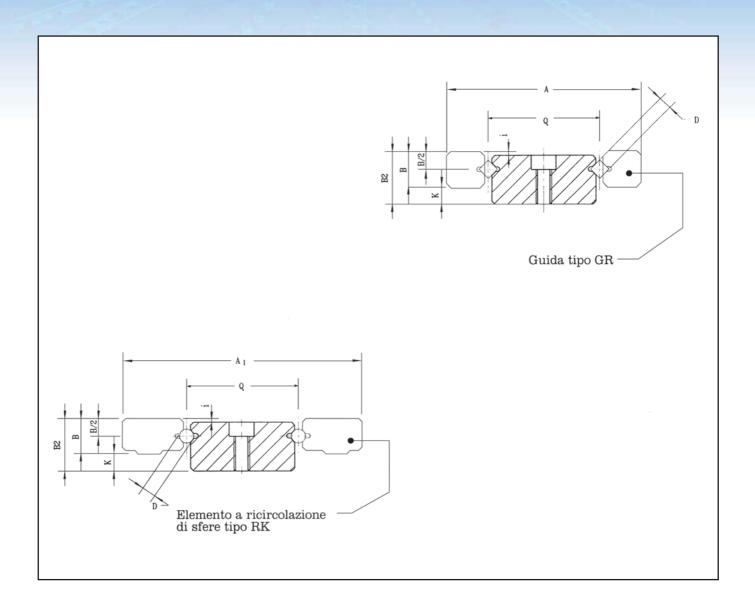
Tipo guida Rail type RM	Tipo guida Rails type RVA	Peso in gr guida RM Type RM weight (g)	Peso in gr guida RM Type RVA weight (g)	L	g	c	A	В	J	С	e	f	v	М
92025- 200 92025- 300 92025- 400 92025- 500 92025- 600 92025- 700 92025- 800 92025- 900 92025-1000 92025-1100 92025-1200	92025-200 92025-300 92025-400 92025-500 92025-600	685 1020 1355 1690 2025 2360 2695 3030 3365 3700 4035	695 1030 1365 1700 2035	200 300 400 500 600 700 800 900 1000 1100	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	44	22	24	9	М8	6,8	10,5	6,2
2025- 200 2025- 300 2025- 400 2025- 500 2025- 600 2025- 700 2025- 800 2025- 900 2025- 1000 2025-1100 2025-1200	2025-200 2025-300 2025-400 2025-500 2025-600	900 1350 1830 2295 2760 3225 3690 4155 4620 5085 5550	900 1350 1800 2250 2700	200 300 400 500 600 700 800 900 1000 1100	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	52	25	28	10	M10	8,5	13,5	8,2
2535- 300 2535- 400 2535- 500 2535- 600 2535- 700 2535- 800 2535- 900 2535-1000 2535-1100 2535-1200	2535-300 2535-400 2535-500 2535-600	1905 2540 3175 3810 4445 5080 5715 6350 6985 7620	1965 2620 3275 3930	300 400 500 600 700 800 900 1000 1100 1200	2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	62	30	34	12	M12	10,5	16,5	10,2
3045- 400 3045- 500 3045- 600 3045- 700 3045- 800 3045- 900 3045-1000 3045-1100 3045-1200	3045-400 3045-500 3045-600	3660 4575 5490 6405 7320 8235 9150 10065 10980	3460 4325 5190	400 500 600 700 800 900 1000 1100	3x100 4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	74	35	42,5	14	M14	12,5	18,5	12,2
3555- 500 3555- 600 3555- 700 3555- 800 3555- 900 3555-1000 3555-1100 3555-1200	3555-500 3555-600	6170 7410 8650 9890 11130 12370 13610 14850	6100 7320	500 600 700 800 900 1000 1100 1200	4x100 5x100 6x100 7x100 8x100 9x100 10x100 11x100	50	78	45	45	14	M14	12,5	18,5	12,2

È possibile fornire guide RM in un solo pezzo limitatamente ad una lunghezza di mm 1600.

The supply of RM rails as one single piece up to a maximum lenght of 1600 mm is also available.

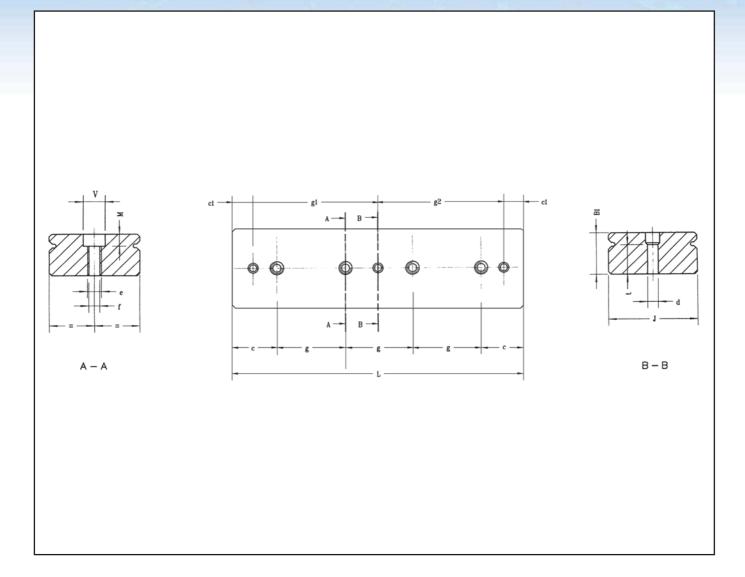
Guide "GRD" a doppio prisma Double raceway rails "GRD"

Le guide GRD sono state concepite con il doppio prisma per semplificare i montaggi, irrobustire le strutture e per speciali applicazioni in cui è richiesta una traslazione a sbalzo di un cursore.


Possono essere inoltre accoppiate con la struttura superiore delle tavole tipo TR o TRL formando in tal modo una tavola più economica. Sono anche parte integrante dei tipi TRKD rappresentati nelle pagine successive.

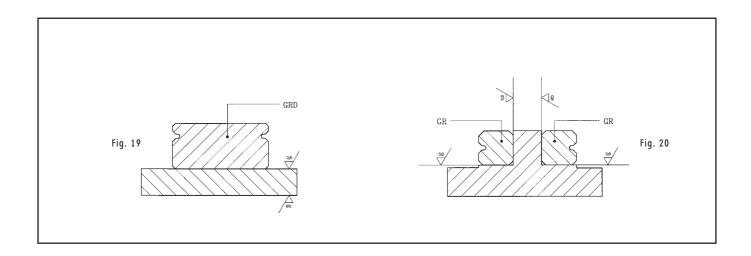
The rails type "GRD" have been designed to semplify assemblies and to increase structural rigidity.

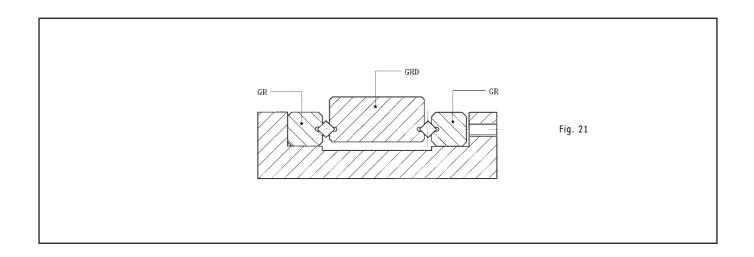
They can be used with the table TR and TRL upper portion to increase the economical benefits. They are an integral component of recirculating systems TRKD.


Guide "GRD"/ Rails "GRD"

Denominazione	К	i	D	6	B 2	В	A1	A
GRD3 200 GRD3 300 GRD3 400 GRD3 500	4	0,5	3	28	12	8	57	46
GRD6 200 GRD6 300 GRD6 400 GRD6 500 GRD6 600 GRD6 700 GRD6 800 GRD6 900 GRD6 1000	5	1	6	45	20	15	94	76
GRD9 300 GRD9 400 GRD9 500 GRD9 600 GRD9 700 GRD9 800 GRD9 900 GRD9 1000	6	1	9	72	28	22	150	116

Guide "GRD"/ Rails "GRD"




Denominazione	L	g	c	e	f	٧	М	J	Bı	g ₁	g 2	C ₁	d	t
GRD3 200 GRD3 300 GRD3 400 GRD3 500	200 300 400 500	3x50 5x50 7X50 9X50	25	M5	4,2	7,5	4,2	26,6	11,5	1x175 125 187,5 225	150 187,5 250	12,5	3	6,5
GRD6 200 GRD6 300 GRD6 400 GRD6 500 GRD6 600 GRD6 700 GRD6 800 GRD6 900 GRD6 1000	200 300 400 500 600 700 800 900 1000	1X100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100	50	M6	5,2	9,5	5,2	41,8	19	1x150 1x250 175 210 275 310 375 410 475	175 240 275 340 375 440 475	25	6	12
GRD9 300 GRD9 400 GRD9 500 GRD9 600 GRD9 700 GRD9 800 GRD9 900 GRD9 1000	300 400 500 600 700 800 900 1000	2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100	50	М8	6,8	10,5	6,2	67,4	27	1x250 175 210 275 310 375 410 475	175 240 275 340 375 440 475	25	8	16

Guide "GRD" / Rails "GRD"

Le guide tipo GRD fanno parte del gruppo delle guide a rulli incrociati o a sfere e sono state realizzate in modo da evitare le lavorazioni della struttura sulla quale normalmente si montano le due guide tipo GR interne (fig. 20). In pratica sono guide che, con il loro doppio prisma, semplificano notevolmente il montaggio riducendone sensibilmente i costi. È sufficiente infatti predisporre un piano rettificato sul quale poter ancorare e spinare la guida GRD. Possono viceversa essere usate come parte mobile, se accoppiate con due guide GR (fig. 21) o due pattini RK (parte fissa).

The rails "GRD" have been designed to eliminate the operations required to prepare the structure on which one normally would mount rails type "GR" (Fig. 20). They help to reduce assembly time and cost. In fact, it is sufficient to provide a ground surface upon which the rail "GRD" is mounted. They could be also used as a mobile portion as depicted in Fig. 21.

Pattini "RK" E "RKD" Recirculating linear ball bearings "RK" E "RKD"

I pattini a ricircolazione di sfere tipo RK sono formati principalmente da tre elementi. Il primo di essi è composto da un corpo centrale di acciaio temperato a cuore (durezza HRC 60 \pm 2) che ha la funzione di supportare il carico. Le sfere vengono incanalate nella pista di rotolamento a V della guida, trattenute opportunamente da un monoblocco realizzato in poliammide avente funzione di contenimento delle sfere dando loro la direzionalità.

I pattini accoppiati con i tipi di guide GR o GRD, consentono traslazioni lineari limitate solo dalla lunghezza della guida stessa. Molto importante è la possibilità di realizzare su due guide più carrelli montati su pattini i quali hanno scorrimenti indipendenti tra di loro. Velocità max consentita 120 m/min.

Accelerazione max consentita 50 m/sec².

Nel caso in cui in una tavola vengano montati più di due pattini, questi ultimi devono essere selezionati in altezza.

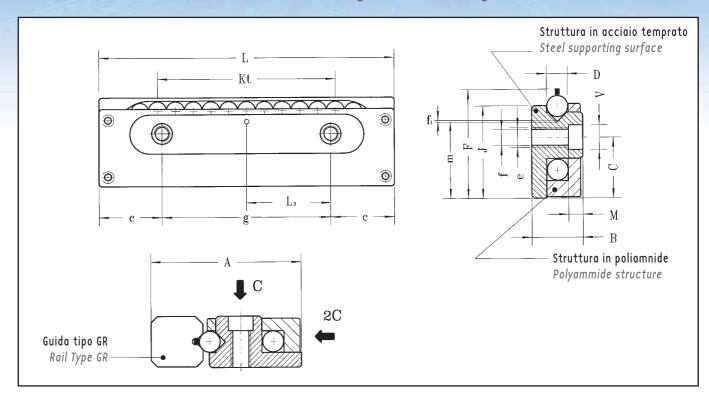
I pattini di taglia 6 e 9 possono essere forniti con elementi di smorzamento (RKD) per ridurre notevolmente la rumorosità. Questo accorgimento riduce in minima parte la capacità di carico.

The recirculating linear ball bearings type "RK" are mainly composed of three parts. The former is a central body in coro hardened steel (hardness HRC 60 \pm 2) whose purpose is to hold the charge. The balls are conveyed to the V-shaped rolling track of the rail, suitably kept by a polyammide block as to hold and give them the direction.

The recirculating linear ball bearings "RK", once coupled with rails "GR" or "GRD", allow linear movements limited only by the length of the rails themselves.

It is important to mention the possibility to use on the same way, several units with independent motion.

Max. admitted speed: 120 m/min.


Max. admitted acceleration: 50 m/sec²

The recirculating linear ball bearings "RK" (size $6 \div 9$) can be supplied with damping elements (RKD) to reduce the noisiness. This reduce however the load capacity.

Always in pole position

Pattini "RK" & "RKD"/ Recirculating linear ball bearing "RK" & "RKD"

Pattinii tipo Ball bearings type	RK3075	RK6100	RKD6100	RK6150	RKD6150	RK9150	RKD9150	RK9200	RKD9200
L	75	100	100	150	150	150	150	200	200
В	8	15	15	15	15	22	22	22	22
F	16,9	29	29	29	29	45,2	45,2	45,2	45,2
g	25	50	50	2x50	2x50	100	100	100	100
c	25	25	25	25	25	25	25	50	50
J	14,7	25,7	25,7	25,7	25,7	38,7	38,7	38,7	38,7
С	9	15	15	15	15	26	26	26	26
e	M4	M6	M6	M6	M6	M8	M8	M8	M8
f	3,3	5,2	5,2	5,2	5,2	6,8	6,8	6,8	6,8
٧	6	9,5	9,5	9,5	9,5	10,5	10,5	10,5	10,5
м	3,2	5,2	5,2	5,2	5,2	6,2	6,2	6,2	6,2
D	3	6	6	6	6	9	9	9	9
Kŧ	48	60	60	102	102	90	90	144	144
carico max ammissibile C (N) Max. allowable Load C (N)	425	715	650	1170	1100	1650	1500	2550	2400
A	23,5	40	40	40	40	61	61	61	61
L ₃	12,5	25	25	25	25	50	50	50	50
m	11,5	19,7	19,7	19,7	19,7	32,4	32,4	32,4	32,4
fı	Ø 1,5	Ø 2	Ø 2	Ø 2	Ø 2	Ø 3	Ø 3	Ø 3	Ø 3

Guide speciali

Special Rails

La nostra Azienda produce su disegno del Cliente anche guide speciali. Sono largamente diffuse presso i costruttori di grosse macchine utensili e non, sulle quali vengono impiegati i pattini a ricircolazione di rulli. Per utilizzare in modo ottimale i pattini a rulli sono necessarie delle quide le quali abbiano delle caratteristiche ben definite: 1) Durezza 60±2 HRC. 2) Errori di planparallelismo molto contenuti nell'ordine di mm 0.01 su 1700 mm 3) Finitura delle superfici pari a 0,3 Ra. Le guide riportate "Rosa" garantiscono queste caratteristiche e hanno il vantaggio di poter essere intercambiabili tra loro. Non utilizzando guide riportate si incorre in alcuni inconvenienti che si possono riassumere in tre punti: 1) Non sempre è possibile trattare le superfici delle guide di un basamento in ghisa in modo da ottenere le durezze sopra indicate. 2) Nel caso di guide ricavate sulla fusione la sola possibilità di trattamento è la tempera elettrica peraltro non ideale con l'impiego dei pattini. 3) Per poter rettificare le quide di un bancale molto lungo è necessaria una macchina di notevoli dimensioni non sempre esistente nelle officine.

The rails shown below are custom made. Such types are largely used by makers of large machine tools as raceways for recirculating roller bearings. To utilize the recirculating roller bearings to their maximum potential, the raceways must have the following characteristics:

- 1) Hardness 60 ± 2 HRC
- 2) Parallelism deviation contained within 0.01 mm over length of 1700 milimeters
- 3) Surface texture of 0.3 Ra

The rails produced by ROSA guarantee these characteristics in addition to interchangeability.

By not using rails, machine manufacturers may incur incoveniences which may be summarized as follows:

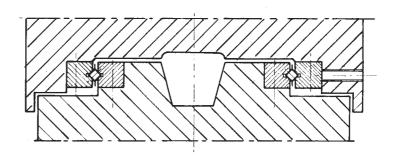
- 1) It is not always possible to heat treat machine bases.
- 2) By deriving raceways on casted basements, the limitation is represented by the heat treating method such as induction hardening, which is not suitable for use with recirculating roller bearings.
- 3) To grind raceways on a very long basement, it is necessary to use a very long machine which is very costly and not always available.

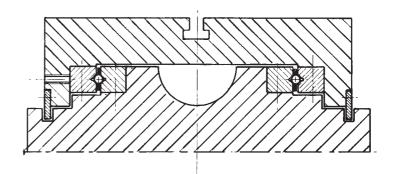
Slitte vincolate e a gravità/ Table arrangements

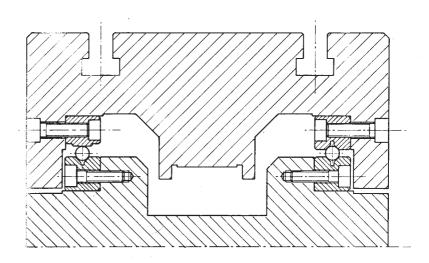
Applicazione di guide GR a rulli incrociati (slitta vincolata)

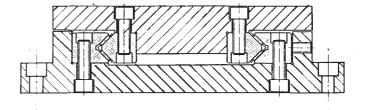
Applications of cross roller way GR type (closed arrangement system)

Applicazione di guide GR a sfere (slitta vincolata)


Application of ball way system GR type (closed arrangement)


Applicazione di guide GR e T a sfere (slitta a gravità)


Application of ball way system with rails type GR & T (open arrangement)

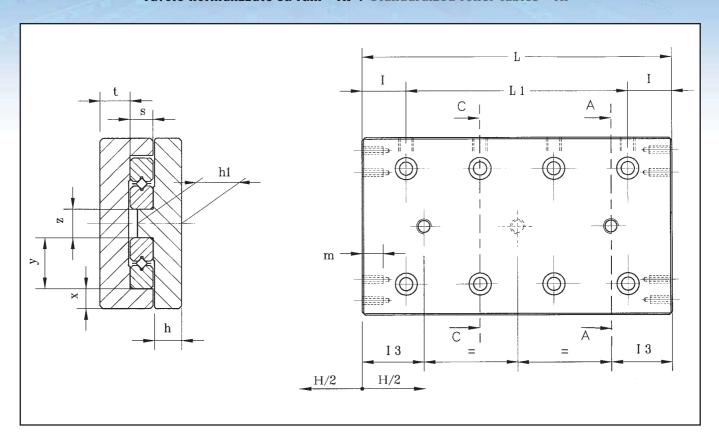

Applicazione di guide RM/RY a rullini (slitta vincolata)

Application of needle way system RM/RV type (closed arrangement)

Tavole "TR" Frictionless tables "TR"

Le tavole tipo TR1-2 in acciaio e tipo TR3-6-9 ricavate da fusioni in ghisa, costituiscono un chiaro esempio di applicazione delle quide GR e sono dei componenti già montati e precaricati con delle tolleranze ben precise (vedi tabelle di collaudo). Vengono utilizzate per realizzare movimenti rettilinei di grande precisione, con corse variabili da 10 mm a 950 mm e con capacità di carico da 250 N a 48100 N. La loro struttura inferiore (fissa) è dotata di fori normalizzati per l'ancoraggio della stessa. La struttura superiore (mobile), può essere utilizzata per il fissaggio di particolari o attrezzature atte all'uso appropriato della tavola. Il cliente ha pertanto la possibilità di forare e filettare il piano dove più lo ritiene necessario. Si consiglia comunque di eseguire possibilmente queste lavorazioni a tavola smontata. Nel caso in cui ciò fosse impossibile, i fori non dovranno assolutamente essere passanti. La tavola dovrà essere inoltre protetta sia lateralmente che in testa, per evitare l'entrata di impurità.

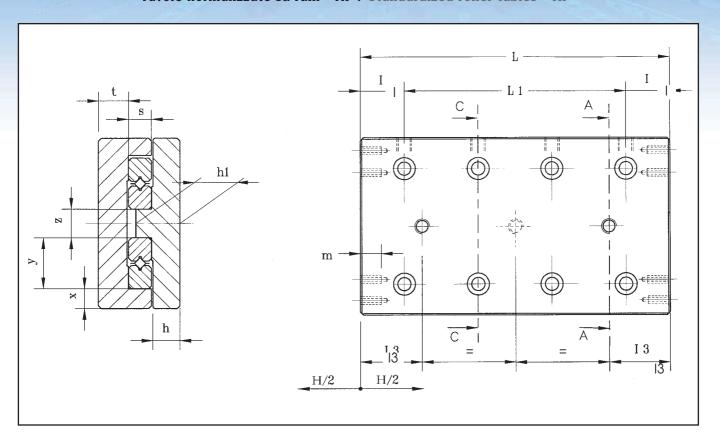
Saranno montate gabbie e terminali adeguati all'uso della tavola, verticale ed orizzontale. Sulle tavole tipo TR9 possono essere montate guide tipo RM/RV o RM/RVA 9 2025 per aumentarne la capacità di carico. Tables type TR1-2 are derived from steel and tables type TR3-6-9 are derived from cast iron castings. They provide a clear example of applications for "GR" systems. They are carefully machined and molded to provide high precision movement. They are standardized for stroke of 10 to 950 mm and load rating of 250 N to 48100 N. The base is provided with standardized holes for mounting. The mobile portion can be used to support predetermined tooling.


The customer can drill and thread the surface to suit his application to do so, the table should be disassembled. If this is not possible, the holes should be blind and care should be taken to insure protection to avoid chip penetration. Each table utilizes rails and cages suitable to its application.

On the table type TR9 it is possible to use rails RM/RV or RM/RVA 92025 in order to increase the table load capacity.

Always in pole position

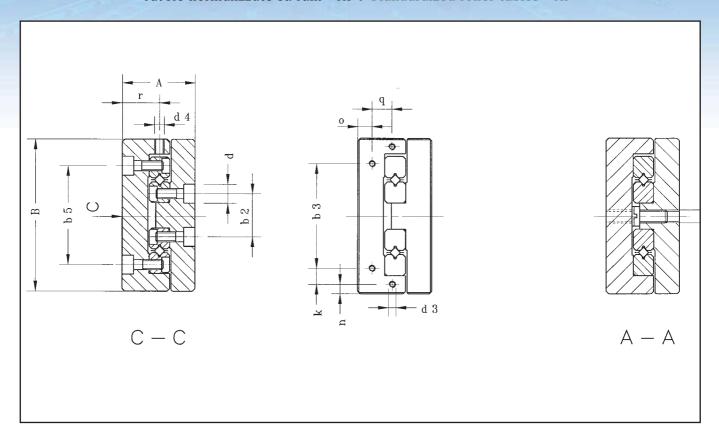
Tavole normalizzate su rulli "TR"/ Standardized roller tables "TR"


Denominazione tavola Tables designation	Corsa H Stroke H	L(±0,1)	Lı	g Rullo Roller	h	hı	I	lз	m	s	t	x	у	z
TR1 25 TR1 35 TR1 45 TR1 55 TR1 65 TR1 75 TR1 85 TR1 85 TR1 95 TR1 105	10 18 25 32 40 45 50 55 60	25 35 45 55 65 75 85 95	1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10 9x10	1,5	5,5	9	7,5	2,5 4,5 6 7,5 8,5 11 13,5 16 18,5	6	4	7	3,8	8,5	5
TR2 35 TR2 50 TR2 65 TR2 80 TR2 95 TR2 110 TR2 125 TR2 140 TR2 155	18 30 40 50 60 70 80 90 100	35 50 65 80 95 110 125 140 155	1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15 9x15	2	6,5	11	10	3 4,5 7 9,5 12 14,5 17 19,5 22	6	6	7,8	4,8	12	6

Foratura supplementare sulla struttura superiore come da disegno e tabelle per TRL1 - TRL2 a richiesta (indicare esecuzione"B"sull'ordine).

Standardized drilling on the upper structure as per drawing and quote above for TRL1 - TRL2 (sign "B" execution on order).

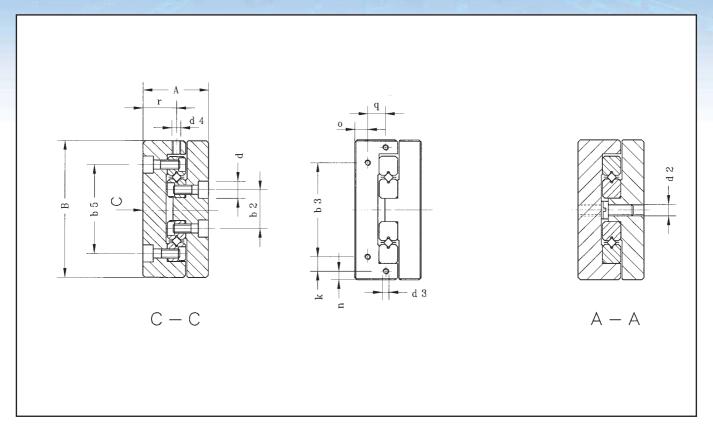
Tavole normalizzate su rulli "TR"/ Standardized roller tables "TR"


Denominazione tavola Table designation	Corsa H Stroke H	L(±0,1)	Lı	Ø Rullo Ø Roller	h	h ₁	I	lз	m	s	t	x	у	z
TR3 55 TR3 80 TR3 105 TR3 130 TR3 155 TR3 180 TR3 205	30 45 60 75 90 105 130	55 80 105 130 155 180 205	1x25 2x25 3x25 4x25 5x25 6x25 7x25	3	9	15	15	5,5 10,5 15,5 20,5 25,5 30,5 30,5	7	8	10,5	7	18	10
TR6 110 TR6 160 TR6 210 TR6 260 TR6 310 TR6 360 TR6 410	60 95 130 165 200 235 265	110 160 210 260 310 360 410	1x50 2x50 3x50 4x50 5x50 6x50 7x50	6	13	22	30	16,5 24 31,5 39 46,5 54 64	8	15	16	12	31	14
TR9 210 TR9 310 TR9 410 TR9 510 TR9 610 TR9 710 TR9 810 TR9 910 TR9 1010	130 180 350 450 550 650 750 850 950	210 310 410 510 610 710 810 910 1010	1x100 2x100 3x100 4x100 5x100 6x100 7x100 8x100 9x100	9	16	29	55	27 52 17 17 17 17 17 17	10	22	21	14,5	44	28

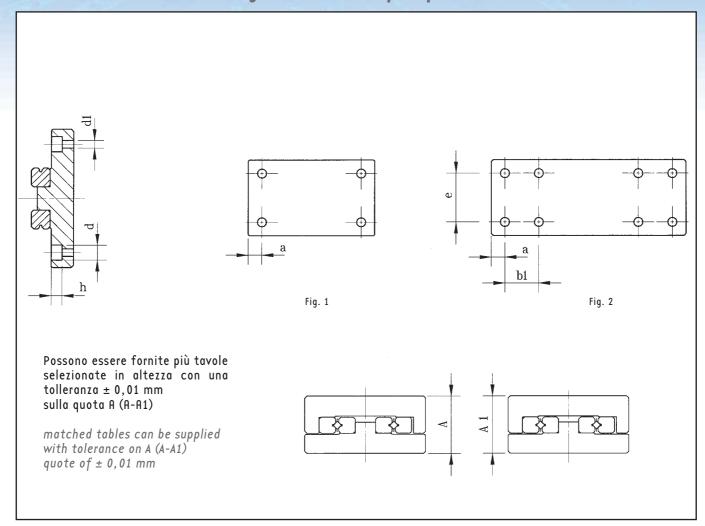
Foratura supplementare sulla struttura superiore come da disegno e tabelle per TRL3 - TRL6 a richiesta (indicare esecuzione "B" sull'ordine).

Standardized drilling on the upper structure as per drawing and quote above for TRL3 - TRL6 (sign "B" execution on order).

Always in pole position


Tavole normalizzate su rulli "TR"/ Standardized roller tables "TR"

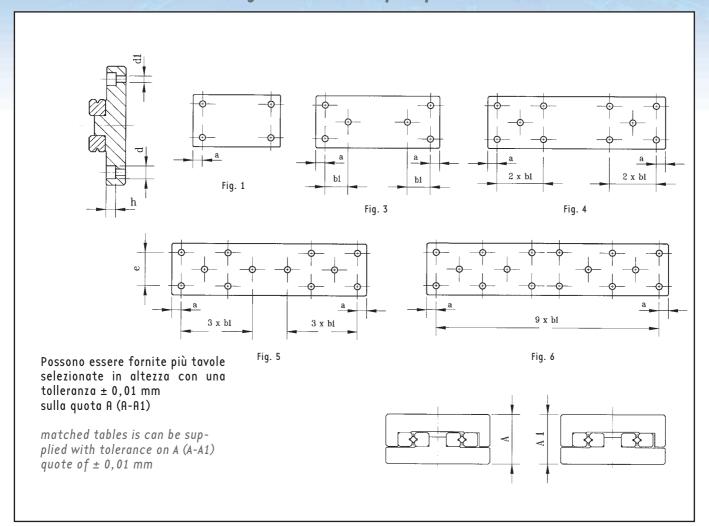
Denominazione tavola Table designation	A	В	bs	b ₂	b3	d	d 2	d₃	d4	k	n	0	q	r	Carico max. ammissibile C (N) Maximum allovable load C (N)	Peso della tavola (kg) Table weight (Kg)
TR1 25 TR1 35 TR1 45 TR1 55 TR1 65 TR1 75 TR1 85 TR1 95 TR1 105	17±0,1	30+0,1	18,4	8,6	12	4,1	M2	M2	M2,5	-	-	3,5	-	9	250 350 450 550 650 750 900 1000 1150	0,080 0,116 0,150 0,179 0,213 0,246 0,278 0,312 0,349
TR2 35 TR2 50 TR2 65 TR2 80 TR2 95 TR2 110 TR2 125 TR2 140 TR2 155	21±0,1	40+0,1	25	11	16	6	М3	M2	М3	-	-	3,5	-	11	425 595 850 1020 1275 1445 1700 1870 2125	0,183 0,263 0,348 0,425 0,504 0,586 0,670 0,750 0,832


Tavole normalizzate su rulli "TR"/ Standardized roller tables "TR"

Denominazione tavola Table designation	A	В	bs	b 2	bз	d	d ₂	d₃	d4	k	n	•	q	r	Carico max. ammissibile C (N) Maximum allovable load C (N)	Peso della tavola (kg) Table weight (Kg)
TR3 55 TR3 80 TR3 105 TR3 130 TR3 155 TR3 180 TR3 205	28±0,1	60+0,1	39	17	40	7,5	M4	М3	M4	-	_	5,5	_	14,5	910 1300 1820 2210 2730 3120 3510	0,57 0,8 1,3 1,26 1,49 1,72 1,95
TR6 110 TR6 160 TR6 210 TR6 260 TR6 310 TR6 360 TR6 410	45±0,1	100±0,2	64	26	60	11	M5	M4	М5	16	4	8	15	23,5	3710 5830 7420 9540 11660 13250 15370	3,07 4,46 5,85 7,24 8,63 10,02 11,41
TR9 210 TR9 310 TR9 410 TR9 510 TR9 610 TR9 710 TR9 810 TR9 910 TR9 1010	60±0,1	145±0,2	98	46	90	14,5	M8	M4	M6	22,5	5	11	20	32	11700 18200 20800 24700 29900 33800 39000 42900 48100	11,8 17,3 22,8 28,3 33,8 39,3 44,8 50,3 55,8

Fori di ancoraggio sulla struttura inferiore per tavole "TR"/

Mounting holes on the lower part of tables "TR"



Denominazione tavola Table designation	α	b1	Fig.	e	h	d	d1
TR1 25 TR1 35 TR1 45 TR1 55 TR1 65 TR1 75 TR1 85 TR1 95 TR1 105	3,5	10	1 1 1 2 2 2 2 2 2 2 2	22	2,5	4,1	2,5
TR2 35 TR2 50 TR2 65 TR2 80 TR2 95 TR2 110 TR2 125 TR2 140 TR2 155	5	15	1 1 1 2 2 2 2 2 2 2 2	30	3,5	6	3,5

Fori di ancoraggio sulla struttura inferiore per tavole "TR"/

Mounting holes on the lower part of tables "TR"

Denominazione tavola Table designation	α	b1	Fig.	e	h	d	d1
TR3 55 TR3 80 TR3 105 TR3 130 TR3 155 TR3 180 TR3 205	10	25	1 1 1 1 3 3 4	40	5	7,5	4,5
TR6 110 TR6 160 TR6 210 TR6 260 TR6 310 TR6 360 TR6 410	10	50	1 1 3 3 3 4 4	60	7	11	7
TR9 210 TR9 310 TR9 410 TR9 510 TR9 610 TR9 710 TR9 810 TR9 910 TR9 1010	55	100	1 1 3 3 4 4 5 5 6	90	9	14	9

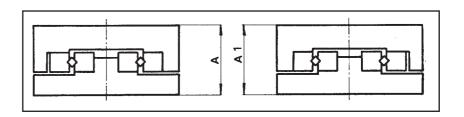

Always in pole position

Tabella di collaudo per tavole "TR"/ Inspection for tables "TR"

LUNGHEZZA DELLE TAVOLE IN mm/ TABLE LI TOLLERANZE ESPRESSE IN µm/ TOLERANCE			da from 25 a/to 50	da from 55 a/to 105	da from 110 a/to 160	da from 180 a/to 310	da from 410 a/to 510	da from 610 a/to 710	da from 810 a/to 1010
	Planarità controllata sul longitudinale e sul trasversale di tutta la superficie della tavola	errore ammesso admitted error	5	10	15	20	25	30	40
	Flatness checked on longitudinal and transversal axis of the table	errore rilevato measured error							
	Parallelismo del movimento laterale	errore ammesso admitted error	2	3	3	4	5	6	6
	Parallelism (Lateral)	errore rilevato measured error							
Q	Parallelismo del movimento della struttura superiore controllato in mezzeria	errore ammesso admitted error	2	2	3	3	4	4	5
	Parallelism (Upper Portion) measured on the center line	errore rilevato measured error							
	quota dell'altezza A della tavola controllata con micrometro	errore ammesso admitted error				± 100			
<u> </u>	Height	errore rilevato measured error							

tolleranza quota A delle tavole accoppiate: ± 0,01 mm

tolerance of matched tables (quote A): ± 0,01 mm

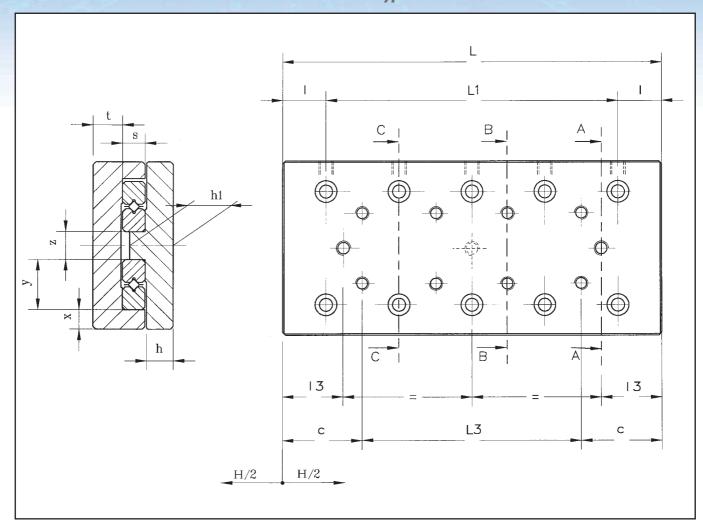
Tavole «TRL» in lega leggera

Frictionless Tables "TRL"

Quanto precedentemente detto per le tavole tipo TR vale anche per la serie in lega leggera, con alcune differenze per quanto riguarda il dimensionamento. La quota A è inferiore per i tipi TRL1, TRL3 e TRL6 (vedere tabelle dimensionali). La serie di tavole TRL6 contempla inoltre due lunghezze in più rispetto al tipo TR, e la serie TRL3 ne contempla quattro in più. Esse si differenziano inoltre per il peso decisamente inferiore. Ne deriva che le tavole TRL, sono più indicate per movimenti con grandi accelerazioni in quanto diminuisce la massa e quindi l'inerzia. Le tavole sono tutte provviste di fori maschiati di fissaggio.

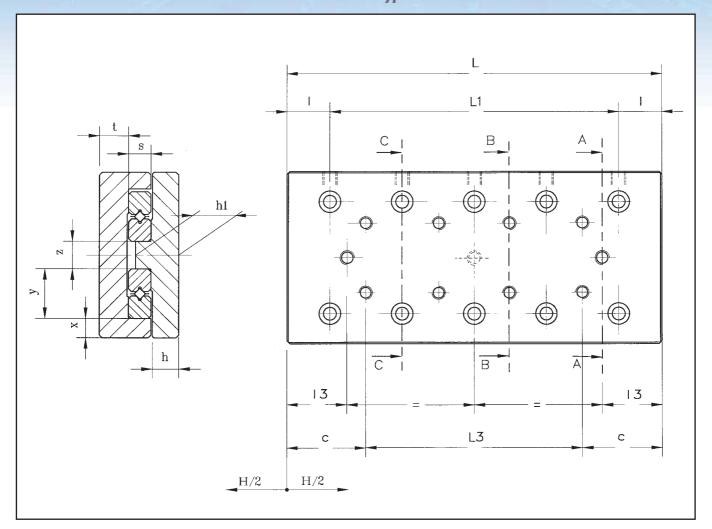
What was said previously for table TR is also valid for the series made of light alloy. However, differences as far as sizing and load rating are present. The height A is smaller for type TRL1, TRL3 and TRL6 series (see dimension table).

The series TRL6 has two additional sizes with respect to its cast iron counterpart TR6. While the series TRL3 includes four additional sizes. The load ratings are lower than series TR and so is the weight.

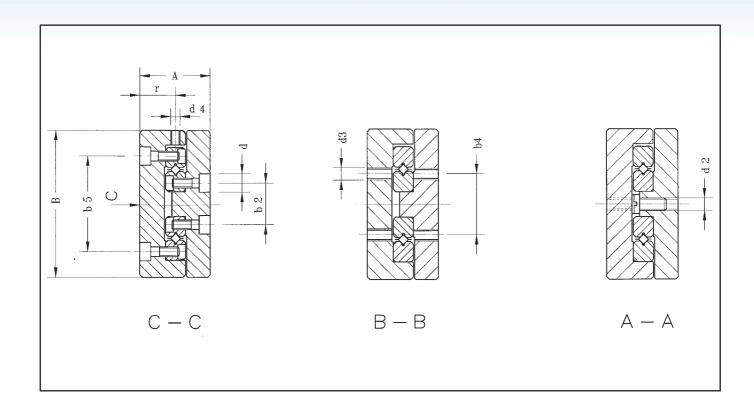

Therefore, the table TRL are indicated for movements with high acceleration since their mass is lower and consequently the inertia.

Tables of series TRL are supplied with attaching holes.

Tavole a rulli tipo «TRL» in lega leggera

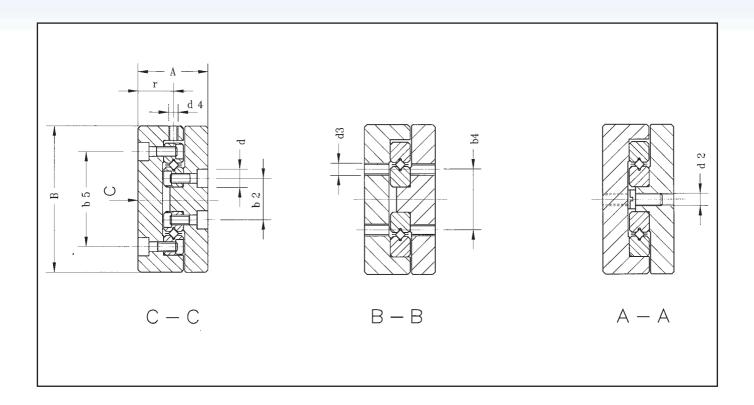

Frictionless tables type "TRL"

Denominazione tavola Table designation	Corsa H Stroke H	L(±0,1)	Ø Rullo Ø Roller	Lı	L₃	c	h	hı	I	lз	s	t	x	Y	z
TRL1 25 TRL1 35 TRL1 45 TRL1 55 TRL1 65 TRL1 75 TRL1 85 TRL1 95 TRL1 105	10 18 25 32 40 45 50 55 60	25 35 45 55 65 75 85 95 105	1,5	1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10 9x10	- 1x10 2x10 3x10 4x10 5x10 6x10 7x10 8x10	12,5	4,1	7,6	7,5	3,5 4,5 6 7,5 8,5 11 13,5 15	4	4,5	4	8,5	5
TRL2 35 TRL2 50 TRL2 65 TRL2 80 TRL2 95 TRL2 110 TRL2 125 TRL2 140 TRL2 155	18 30 40 50 60 70 80 90	35 50 65 80 95 110 125 140	2	1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15 9x15	- 1x15 2x15 3x15 4x15 5x15 6x15 7x15 8x15	17,5	6,5	11	10	3 4,5 7 9,5 12 14,5 17 19,5 22	6	8	5	12	6

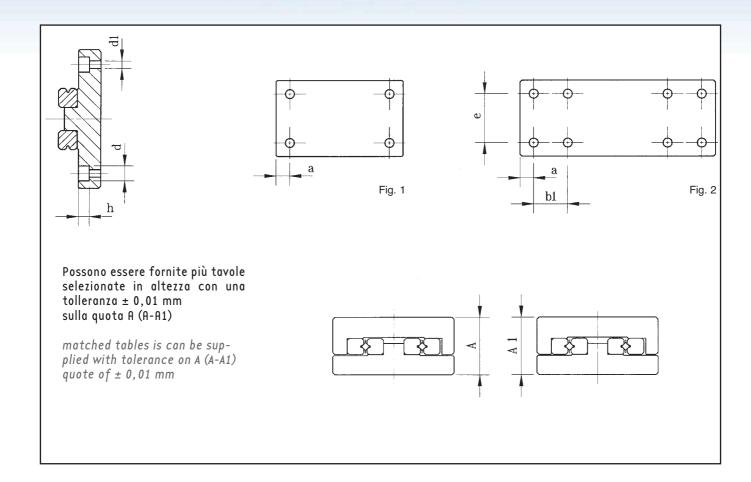


Tavole a rulli tipo «TRL» in lega leggera Frictionless tables type "TRL"

Denominazione tavola Table designation	Corsa H Stroke H	L(±0,1)	Ø Rullo Ø Roller	Lı	L3	c	h	hı	ı	lз	s	t	x	Y	z
TRL3 55	30	55		1x25	_					5,5					
TRL3 80	45	80		2x25	1x25					10,5					
TRL3 105	60	105		3x25	2x25					15,5					
TRL3 130	75	130		4x25	3x25					20,5					
TRL3 155	90	155		5x25	4x25					25,5					
TRL3 180	105	180	3	6x25	5x25	27,5	8,2	12,5	15	30,5	8	8,5	7	18	10
TRL3 205	130	205		7x25	6x25					30,5					
TRL3 230	155	230		8x25	7x25					30,5					
TRL3 255	180	255		9x25	8x25					30,5					
TRL3 280	205	280		10x25	9x25					30,5					
TRL3 305	230	305		11x25	10x25					30,5					
TRL6 110	60	110		1x50	_					16					
TRL6 160	95	160		2x50	1x50					23,5					
TRL6 210	130	210		3x50	2x50					31					
TRL6 260	165	260		4x50	3x50					38,5					
TRL6 310	200	310	6	5x50	4x50	55	11,5	19,5	30	46	15	13	12	31	14
TRL6 360	265	360		6x50	5x50					38,5					
TRL6 410	280	410		7x50	6x50					56					
TRL6 460	325	460		8x50	7x50					58,5					
TRL6 510	380	510		9x50	8x50					56					


Tavole a rulli tipo «TRL» in lega leggera Frictionless tables type "TRL"

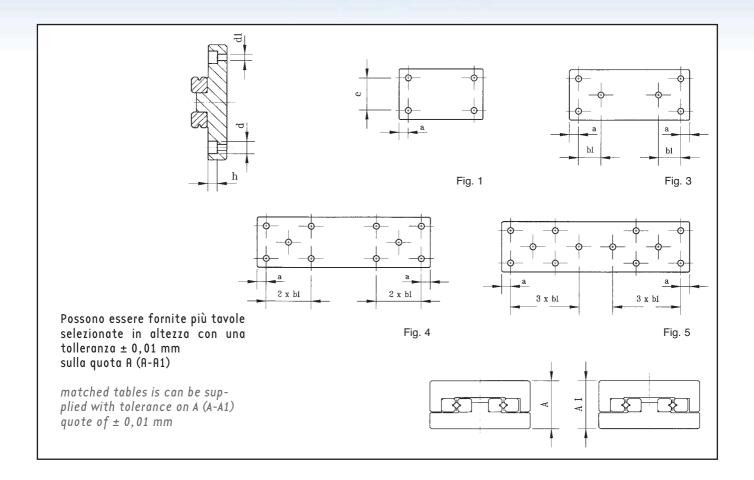
Denominazione tavola Table designation	A	В	bs	b 2	b 4	d	d ₂	dз	d4	r	Carico max. ammissibile C (N) Maximun allowable load C (N)	Peso della tavola (kg) Table Weight (Kg)
TRL1 25 TRL1 35 TRL1 45 TRL1 55 TRL1 65 TRL1 75 TRL1 85 TRL1 95 TRL1 105	13±0,1	30±0,2	18,4	8,6	10	4,1	M2	M2	M2,5	9	250 350 450 530 650 750 900 1000 1150	0,03 0,05 0,06 0,08 0,09 0,11 0,12 0,14
TRL2 35 TRL2 50 TRL2 65 TRL2 80 TRL2 95 TRL2 110 TRL2 125 TRL2 140 TRL2 155	21±0,1	40±0,2	25	11	15	6	М3	М3	М3	11	425 595 850 1020 1275 1445 1700 1870 2125	0,09 0,15 0,19 0,23 0,27 0,31 0,35 0,39 0,43


Tavole a rulli tipo «TRL» in lega leggera Frictionless tables type "TRL"

Denominazione tavola Table designation	A	В	bs	b 2	b ₄	d	d ₂	d₃	d4	r	Carico max. ammissibile C (N) Maximun allowable load C (N)	Peso della tavola (kg) Table Weight (Kg)
TRL3 55 TRL3 80 TRL3 105 TRL3 130 TRL3 155 TRL3 180 TRL3 205 TRL3 230 TRL3 255 TRL3 280 TRL3 305	25±0,1	60±0,2	39	17	25	7,5	M4	M4	M4	12,5	910 1300 1820 2220 2730 3120 3510 3770 4160 4420 4820	0,29 0,42 0,55 0,68 0,81 0,94 1,07 1,2 1,33 1,46 1,59
TRL6 110 TRL6 160 TRL6 210 TRL6 260 TRL6 310 TRL6 360 TRL6 410 TRL6 460 TRL6 510	40±0,1	100±0,2	64	26	50	11	М5	М6	М5	20,5	3710 5830 7420 9540 11660 12720 14840 16430 18020	1,5 2,25 3 3,75 4,5 5,25 6 6,75 7,5

Fori di ancoraggio sulla struttura inferiore per tavole «TRL»

Mounting holes on the lower part of tables "TRL"



Denominazione tavola Table designation	α	b1	Fig.	e	h	d	d1
TRL1 25 TRL1 35 TRL1 45 TRL1 55 TRL1 65 TRL1 75 TRL1 85 TRL1 95 TRL1 105	3,5	10	1 1 1 2 2 2 2 2 2 2 2	22	2,5	4,1	2,5
TRL2 35 TRL2 50 TRL2 65 TRL2 80 TRL2 95 TRL2 110 TRL2 125 TRL2 140 TRL2 155	5	15	1 1 1 2 2 2 2 2 2 2 2	30	3,5	6	3,5

Fori di ancoraggio sulla struttura inferiore per tavole «TRL»

Mounting holes on the lower part of tables "TRL"

Denominazione tavola Table designation	α	b1	Fig.	e	h	d	d1
TRL3 55			1				
TRL3 80			1				
TRL3 105			1				
TRL3 130			1				
TRL3 155	10	25	3	40	5	7,5	4,5
TRL3 180	10	23	3	1		,,,	7,5
TRL3 205			4				
TRL3 230			4				
TRL3 255			5				
TRL3 280			5				
TRL3 305			5				
TRL6 110			1				
TRL6 160			1				
TRL6 210			3				
TRL6 260			3				
TRL6 310	10	50	3	60	7	11	7
TRL6 360			3				
TRL6 410			4				
TRL6 460			4				
TRL6 510			5				

Tabella di collaudo per tavole «TRL»

Inspection for tables "TRL"

LUNGHEZZA DELLE TAVOLE IN mm / TABLE L TOLLERANZE ESPRESSE IN µm / TOLERANCE			da/from 25 a/to 50	da/from 55 a/to 100	da/from 110 a/to 160	da/from 180 a/to 310	da/from 410 a/to 510	
	planarità controllata sul longitudinale e sul trasversale di tutta la superficie della	errore ammesso admitted error	10	10	15	20	25	
	tavola Flatness checked on longitudinal and transversal axis of the table	errore rilevato measured error						
	parallelismo del movimento laterale	errore ammesso admitted error	4	5	6	8	9	
	Parallelism (Lateral)	errore rilevato measured error						
Q	parallelismo del movimento della struttura superiore controllato in mezzeria	errore ammesso admitted error	2	4	6	8	9	
	Parallelism (Upper Portion) measured on the center line							
	quota dell'altezza A della tavola controllata con micrometro	errore ammesso admitted error				± 100		
	Con micrometro Height							

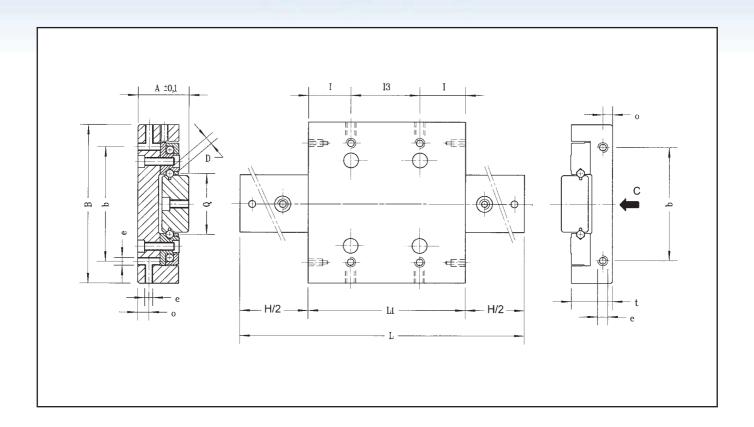
Tavole «TRKD» Frictionless Tables "TRKD"

La tavola TRKD composta da una struttura in lega, sulla quale sono montati due pattini RK scorrevoli su di una quida a doppio prisma GRD, permette di risolvere il problema delle lunghe traslazioni. La possibilità infatti di abbinare diverse guide a doppio prisma rettificandole in linea determina una corsa delle tavoletta con dei limiti ancora da stabilire, ma che sarebbe ovviamente assurdo dire illimitati. Quanto già detto nella parte riquardante le quide GRD vale in parte anche in questo caso, ma con l'alternativa di avere la tavoletta già montata con i pattini a ricircolazione di sfere. È pertanto evidente che la portata e la velocità saranno relative alle dimensioni dei pattini, comunque sempre valida la velocità sino a 120 m/min, con accelerazioni fino a 50 m/sec2 e la portata da 850 N a 3300 N. Va tenuta, pure sempre presente, la possibilità di abbinare più carrelli su di un'unica guida, richiedendone espressamente l'allineamento dei piani, in fase di ordinazione.


The tables TRKD are composed of an upper structure made of aluminium alloy which incorporates two recirculating linear ball bearings. This unit rides on a rail type GRD.

Such an assembly allows for long travel distance, limited only by the rail length. The rail GRD was previously described. It is obvious that the performance of the system is directly related to the type of recirculating linear ball bearing employed.

The ratings vary between 850 N and 3300 N and the maximum velocity is 120 m/min.


Max admitted acceleration: 50m/sec²

It is possible to assemble more translating units on the same rail-their height matching can be requested when ordering.

Tavole tipo «TRKD»

Tables type "TRKD"

	nazione nation	Corsa H Stroke H	A	В	L	Lı	6	Lg	D	b	e	I	I3	0	t	Carico max ammissibile C (N) Maximum allowable load C (N)
TRKD3 TRKD3 TRKD3 TRKD3	200 300 400 500	120 220 320 420	22,5	70	200 300 400 500	80	28	48	3	53	M4	27,5	25	5	18,5	850
TRKD6	200 300 400 500 600 700 800 900	95 195 295 395 495 595 695 795 895	36	120	200 300 400 500 600 700 800 900 1000	105	45	60	6	86	M6	27,5	50	8	31	1430
TRKD9 TRKD9 TRKD9 TRKD9 TRKD9 TRKD9 TRKD9 TRKD9 TRKD9	300 400 500 600 700 800 900	145 245 345 445 545 645 745 845	49	180	300 400 500 600 700 800 900 1000	155	72	90	9	126	М8	27,5	100	10	43	3300

Tabella di collaudo per tavole «TRKD» Inspection tables for "TRKD"

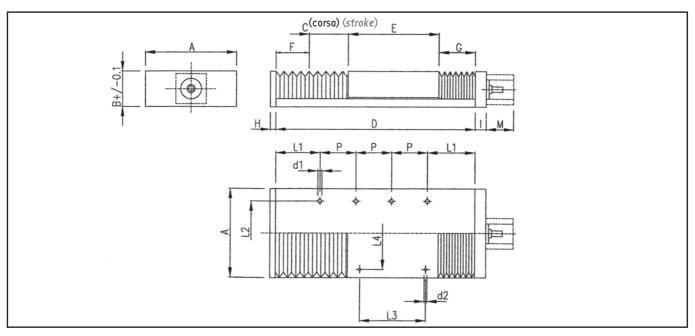
Tolleranze espresse in μm Tolerance (μm)	Parallelismo dello scorrimento controllato lateralmente sull'intera corsa Lateral parallelism checked	Parallelismo dello scorrimento controllato verticalmente sull'intera corsa Parallelism checked on the	Parallelismo della struttura superiore controllato sulla mezzeria Parallelism of upper portion measured on the center line
Denominazione/Designation	on the entire stroke	entire stroke	
TRKD3 200 300 400 500	10 10 16 24	4 5 7 7	15 20 20 20
TRKD6 200 300 400 500 600 700 800 900 1000	10 10 18 24 10 15 18 24 26	4 5 8 8 8 9 9	15 20 20 20 25 25 25 25 25
TRKD9 300 400 500 600 700 800 900 1000	10 10 10 10 10 12 12 12 14	5 6 7 8 9 9 10 10	20 25 25 30 30 30 30 30 30

Tavole di precisione «TV» Precision Tables "TV"

Tavole lineari di precisione, componibili per il montaggio X Y I e multiasse. Motorizzabili con comando CNC, movimento su guide a rulli e viti a ricircolo di sfere.

Elevata rigidità e capacità di carico.

Linear precision tables, modular type for assembling on X,Y,Z and on multiple axes. Motor-drive with CNC control, motion on cross roller rails and ballscrews.


Considerable stiffness and load capacity.

Dimensioni ingombro/Overall Dimension

Tipo '	Tavola/		Dimensioni (mm)/ Dimensions (mm)														
Tabl	e type	A	В	С	D	E	F-G	Н	I	L1	L2	Р	d1	L3	L4	d2	М
TV00	75/50 125/75	52	25	25 50	75 125	50 75	-	6	12	2x12.5 2x25	20	1x50 1x75	4.5	25 50	38	М5	
TV0	100/75 150/100	75	32	25 50	100 150	75 100	-	6	12	2x12.5 2x25	32	1x75 1x100	5.5	50 75	52	M5	Secondo il tipo
TV01	150/100 200/100	100	45	50 100	150 200	100	-	6	15	2x37.5 2x62.5	50	1x75	5.5	50	75	M5	di motore/
TV1	125/250 125/300	125	50	50 100	250 300	125	37,5	6	15	2x25 2x50	90	4x50	5.5	90	100	M5	to the
TV2	160/370 160/420 160/470	160	68	100 150 200	370 420 470	160	55	6	15	2x35	125	6x50 7x50 8x50	7	125	100	M6	motor type
TV3	210/450 210/500 210/550	200	80	100 150 200	450 500 550	210	70	8	18	2x100	170	5x50 6x50 7x50	9	170	150	M8	

Caratteristiche costruttive/ Design Features

Tipo Tavola/	Vit	e/ Ballscrew	Tipologia	guide utilizzate/	Struttura tavola/	Protezioni/	
Table type	le type Tipo*/Type* Øx passo/ Øx pitch (mm) Type of rails utilised		Table structure	Protections			
TV00	Т	6x1	A rulli	diametro 3mm/			
TV0	T-RG	8x1	3 mm dia. rollers		Ghisa con piani	-	
TV01	T-RG / RDS-RT	8x1 / 8x1 (2)	A rulli d	A rulli diametro 4.5mm/			
TV1	RDS-RT	10x2	4.5 m	nm dia. rollers	Cast-iron with	0.00ff;0440/	
TV2	RDS-RT	16x5 (12x2)	Rulli Ø 6/ Strisc. con mat. antifriz./		ground surfaces	A soffietto/ Bellow type	
TV3	RDS-RT	16(20)x5	6 mm Ø rollers Sliding on low-frict. mat.			Denow type	

* Tipo di vite: **RDS** a ricircolo di sfere precaricate.

RT a filetto rettificato

T tornitura di precisione.

RG a recupero di gioco. Su richiesta , viti con passi diversi da quelli in tabella

Accessori:

Supporto giunto motore.

Fine corsa d'emergenza. Impianto di lubrificazione (TV2-TV3). Realizzazione tavole personalizzate, ad asse

singolo o movimento incrociato su specifica richiesta.

* Ballscrew type:

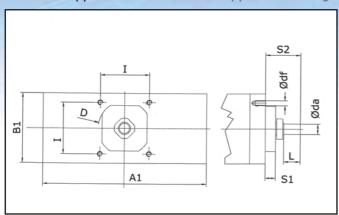
RDS with preloaded recirculating balls

RT with ground thread

T Precision turning

RG with play compensation On request, screw pitches different from the ones on the chart are available.

Accessories:


Motor joint support Emergency limit-switch

Lubrication system (TV2-TV3)

On specific request, customised tables, single-axis tables or cross-motion tables can be supplied.

Always in pole position

Attacco supporto motore/ Motor support mounting

Tipo tavola/ Table type	A 1	B 1	I	D	S 1	S 2	df	da	L
TV 00	51	24	20	22	20	36	M2.5	5	16
TV 0	73	30	26	28	22	43	М 3	6	21
TV 01	100	44	35.4	43	9	27	М 3	6	10
TV 1	125	48	35.4	43	9	27	М 3	6	10
TV 2	160	66	50	54	10	33	M 4	10	15
TV 3	200	78	50	54	10	33	M 5	10	15
*	200	78	60	63	15	47	M 6	12	20

^{*}con vite diametro 20 mm/ * with 20 mm dia. ballscrew

Tolleranze costruttive (misurate a tavola scarica, su base piana)/ Design tolerances (measured on unloaded table, located on flat basis)

Tipo Tavola/ Table type	Planarità carro / Carriage planarity	Valore (µm)/ Value (µm)	Parall. movimento laterale carro (*) / Parallelism of lateral carriage motion (*)	Valore (μm)/ Value (μm)	Parall. movimento piano carro (*) / Parallelism of plane carriage motion (*)	Valore (μm)/ Value (μm)
TV 00 TV 0 TV 01 TV 1 TV 2 TV 3		10 10 15 15 20 25		4 6 8 10 12		4 6 8 10 12

(*) Valori rilevati sulla corsa totale della tavola/ (*) Values measured over the total table travel.

CARICHI E MOMENTI AMMISSIBILI

Le tavole serie TV vengono utilizzate per realizzare sistemi di posizionamento, per uso generale nel settore automazione ed anche per lavorazioni meccaniche leggere. I carichi ammissibili indicati sulle tabelle, sia per quanto riguarda il sistema di guida che il carico di spinta sulla vite sono da considerare come valori teorici massimi. Per un corretto impiego delle tavole, per quanto riguarda precisione, rigidità, durata e sicurezza del sistema, è necessaria l'applicazione di opportuni coefficienti di sicurezza; vedere tabelle e metodi di calcolo nelle sezioni specifiche dei cataloghi guide e viti ROSA SISTEMI.

ADMISSIBLE LOADS AND TORQUES

The tables of the TV series are used for the realisation of positioning systems, for general use in the industrial automation and for light mechanical operations.

The admissible loads shown in the charts must be considered as maximum theoretical values both for the rails system and for the thrust load on the drive-screw. For a correct use of the tables as to accuracy, stiffness, lifetime and safety of the system, it is necessary to consider the appropriate safety coefficients. For this purpose, see the charts and calculation methods in the specific chapters in the ROSA SISTEMI Catalogues for rails and drive-screws.

VITI-CARATTERISTICHE

E CARICHI AMMISSIBILI

N.B. Sulle tavole TV2-TV3 le viti sono supportate su due estremità mentre sulle rimanenti sono supportate e vincolate solo sull'estremità lato motore.

BALLSCREWS

FEATURES AND ADMISSIBLE LOADS

Note: On the TV2-TV3 tables, the ballscrews are supported on both ends, while on the others these are supported and linked only to the motor side.

Tipo vite/	Diametro x passo (mm)		missibile (N) le load (N)	Gioco assiale (µm)	Grado di precisione	Ripetibilità precisione meccanica (µm)
Screw type	Diameter x pitch (mm)	C stat. Stat. load	C din. Dyn. load	Axial play (μm)	(μm) Accuracy grade (μm)	Mech. repeatable accuracy (μm)
Т	6x1	50	20	20		20
T-RG	8x1	120	50	0		10
	8x1	1300	700		IT 5	
	8x2	1500	900		e/300 = 23 (IT3)	
DDC DT	10x2	2900	1500	0 precarico	e/300=12	
RDS-RT	12x2	3200	2500	leggero/ Light preload	solo RDS-RT	5
	16x5	33000	11000	Light pictoud		
	20x5	38700	12900			

VELOCITA'

Pur essendo consentita alle guide una velocità massima fino a 40-50 m/min, questi valori non vengono mai raggiunti, considerata la breve corsa delle tavole, le accelerazioni necessarie ed il ridotto passo delle viti di comando. Dal punto di vista di velocità l'organo limitante è la vite, da cui discendono i valori ammessi.

Velocità massima di rotazione della vite (n) 2400n/min Passo vite (p) in mm

Velocità lineare ottenibile dalla tavola = $\frac{x}{60}$ (mm/sec)

LUBRIFICAZIONE

Viti e guide vengono adeguatamente lubrificate al montaggio; olio per guide e grasso per le viti a RDS.

Tuttavia vanno verificate periodicamente le condizioni di lubrificazione del sistema e se necessario provvedere al ripristino delle condizioni iniziali.

Sulle tavole TV2/TV3 si possono installare sistemi centralizzati di lubrificazione ad olio.

Le tavole vengono fornite con una specifica documentazione relativa ai lubrificanti consigliati.

SPEED

Although the maximum admissible speed for the tables is up to 40-50 m/min, these values will never be reached considering the short stroke of the tables, the necessary accelerations and the reduced pitch of the ballscrews. From the speed standpoint the limitation is given by the ballscrew, from which the admissible values are derived. Maximum rotary velocity of the ballscrew (n) 2400 n/min Screw pitch (p) in mm

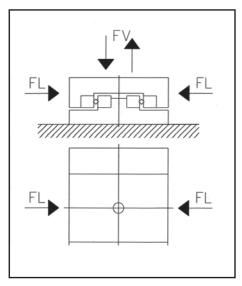
Linear table speed obtainable = $\frac{n \times p}{60}$ (mm/sec)

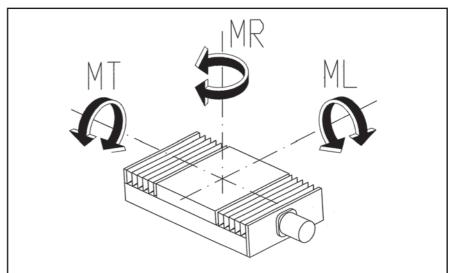
LUBRICATION

The ballscrews and rails have been correctly lubricated during assembling, i.e. oil is used for the rails and grease for the ballscrews.

However, the conditions of the system lubrication must be checked from time to time and, if necessary, the initial conditions restored.

The TV2/TV3 tables permit the installation of centralised oil lubrication systems.


The tables are supplied together with the specific documentation about the recommended lubricants.


Carichi applicabili/ Applicable Loads

Tino	tavola/	Carico ammissibile (N) / Admissible load (N)						
		FV=FL						
labi	e type	statico/ Static	dinamico/ Dynamic					
TV 00	75/50	1040	620					
	125/75	1560	930					
TV 0	100/75	1560	930					
	150/100	2340	1400					
TV 01		10200	6100					
TV 1		13600	8150					
TV 2		7420	4450					
TV 3		10600	6350					

Momenti applicabili/ Applicable Torques

	Tipo tavola/ Table type		Momenti ammissibili (Nm)/ Admissible torques (Nm)					
				MT	ML=MR			
			statico/ Static	dinamico/ Dynamic	statico/ Static	dinamico/ Dynamic		
	TV 00	75/50	26	15	11	6.5		
		125/75	39	23	18	11		
	TV 0	100/75	70	42	18	11		
		150/100	105	63	23	13.5		
	TV 01		612	367	143	86		
	TV 1		1020	612	187	112		
	TV 2		779	467	143	86		
	TV 3		1530	918	190	114		

PESO DELLE TAVOLE

Peso complessivo struttura (accessori e motore esclusi).

WEIGHT OF TABLES

Total weight of the frame structure (Accessories and motor not included)

	tavola/ le type	Peso (kg)/ Weight (kg)	Tipo tavola/ Table type		Peso (kg)/ Weight (kg)	Tipo tavola/ Table type		Peso (kg)/ Weight (kg)
TV 00	75/50	0.6	TV 01	150/100	3.8	TV 2	160/370	16.5
	12/75	1.1		200/100	4.2		160/420	18.0
TV 0	100/75	1.5	TV 1	125/250	5.2		160/470	19.5
	150/100	2.2		125/300	6.0	TV 3	210/450	26.0
							210/500	29.0
-	-	-		-	-		210/550	32.0

Always in pole position

Informiamo la spettabile Clientela che ad ogni riedizione del catalogo ci riserviamo di apportare modifiche dimensionali, ampliamenti o riduzioni alla tipologia dei ns. prodotti senza preventive comunicazioni scritte.

We inform our customers that as for the new issues of our catalogue we reserve the right to modify sizes, to eliminate or include product types in our production range without previous written notice.

Filiali/Branches

ROSA GMBH GASWERKSTRASSE 33/35 LANGENTHAL

Telefono: +41 62 9237333 Fax: +41 62 9237334 E-mail: rosa-ch@bluewin.ch

ROSA DO BRASIL IMP.& EXP. LTDA RUA DR. LUIS ARROBAS MARTINS

468 - VILA FRIBURGO

04781 - 001 - SÃO PAOLO - SP - BRASILE

Tel./Fax: +55 11 5686 8805

E-mail: rosabrasil@rosabrasil.com.br

Web: www.rosabrasil.com.br

ROSA FRANCE SARL QUARTIER VALAURIE 30200 SAINT NAZAIRE - FRANCE

Tel./Fax: +33 466 82 61 03 Portable: +33 676 88 96 33 E-mail: rosafrance@aol.com Potete trovare l'elenco dei rivenditori mondiali sul nostro sito web: www.rosa-sistemi.it

For international dealers, please see our web site: www.rosa-sistemi.it

Il vostro distributore/ Your distributor-

SEFRA Italia s.r.l

PROTEZIONI E SOFFIETTI PER MACCHINE UTENSILI, SISTEMI E COMPONENTI PER L'AUTOMAZIONE, MANDRINI ED ELETTROMANDRINI, VISIPORT - OBLÒ ROTANTI, VITI A RICIRCOLO DI SFERE.

Via dell'Industria, 4 - 44047 Sant'Agostino - Ferrara - Italy Tel.: ++39 532 846786 (r.a.) - Fax: ++39 532 846772 e-mail: sefra@sefra.it - sito: www.sefra.it

ISO 9001 : 2000 CERT. N° 0795

member associate of

C.E.L Consorzio Export Legnano

ROSA SISTEMI SPA

Via Quasimodo, 22/24 • 20025 LEGNANO (Milano) ITALY Tel. +39 0331469999 • Fax +39 0331469996 www.rosa-sistemi.it • E-mail: sales@rosa-sistemi.it